بسم الله الرحمن الرحیم

بینهایت

فهرست علوم

فهرست مباحث ریاضیات
مجموعه

مجموعه
بینهایت
بینهایت واقعی
بینهایت بالقوه
بینهایت شمارا
بینهایت ناشمارا

بهشت کانتور
افلاطونگرائي
هوش ضعیف رفتارمحور-هوش قوی پایه محور-هوش قوی اشراق‌محور
شرح حال گئورگ کانتور(1261 - 1336 هـ = 1845 - 1918 م)
شرح حال داوید هیلبرت(1279 - 1362 هـ = 1862 - 1943 م)
شرح حال کورت گودل(1323 - 1398 هـ = 1906 - 1978 م)
شرح حال لودویگ یوزف یوهان ویتگنشتاین(1306 - 1370 هـ = 1889 - 1951 م)
Convergent series----سری همگرا----متسلسلة متقاربة

Divergent series----سری واگرا----متسلسلة متباعدة

Countable set
Uncountable set


فوق ما لا یتناهی بما لا یتناهی



یادداشت در تک برگ، احتمالا دهه ۷۰:

بسمه تعالی
هر حیث وجودی که فرض بی نهایت در آن شد از همان حیث تعدد بردار نیست، مثل یک خط مفروض که از حیث طول بی نهایت است، اگر به طور مطلق از عرض و عمق صرف نظر کردیم این خط، دومی ندارد، ولی علی ای حال از حیث عرض دیگر بی نهایت نیست بلکه در کمال محدودیت است، و اگر پای عرض به میان آمد بی نهایت خطوط موازی و قاطع در کنار او مفروض است
تا برسیم به یک صفحه و سطح بی نهایت با قطع نظر از عمق که دومی ندارد اما با در نظر گرفتن عمق، سطوح موازی و قاطعه او بی نهایت فرض دارد
بعد یک سه بعدی بی نهایت که دومی ندارد با قطع نظر از بعد چهارم یعنی سیلان وجودی که آن بردار است (زمان)
اما با در نظر گرفتن تجدد بی نهایت سه بعدی مفروض است که با اراده الهی موجود و معدوم شوند، (بالخصوص با در نظر گرفتن توسعه زمان از حیث طول قبض و بسط و مزاج متموج یعنی طول موج آن و نسبیت در آن)
و بعد یک چهار بعدی بی نهایت از حیث چهار بعد که دیگر فرض اعدام نشده است دومی ندارد، اما واضح است که افرادی مختلف برای او مفروض است، مثلاً یک چهار بعدی بی نهایت ساده با یک چهار بعدی بی نهایت ارگانیک ساده با ارگانیک بسیار پیچیده صاحب روح و حیات و سایر کمالات بی نهایت وجودی (علم و قدرت یعنی نفوذ در پیکره خود با ارادات مختلف)
و بالاخره می رسیم به موجودی که از حیث همه کمالات بی نهایت باشد نه فقط از حیث کمالات جمعیة و کثرت در وحدت بلکه مقام وحدت در کثرت هم، یعنی فرض گرفتیم موجود واحدی که به مراتب خود، همه مراتب نقص و کمال را دارد، هرجور ارگانیک مفروضی را واجد است بالتفصیل
اکنون هر صاحب فطرتی می فهمد که این موجود بی نهایت به توان بی نهایت دیگر دومی مفروض هم ندارد ولی هنوز یک اگر و یک فرض سر راه اوست و آن اینکه اگر فرض بگیریم چنین موجود نبود یعنی فرض عدم مطلق بگیریم مانعی نیست، و همین فرض، آیت بزرگ مخلوقیت و امکان و فقر در این موجود مفروض ماست.
و علاوه نفس طبائع صرفه، مصحح این فرض بی نهایت ما در حیثیات متعدده است، و نفس الطبیعة، خود، بی نهایت نیست بلکه مبدئیت برای بی نهایت رقائق خود دارد، پس خالق متعال طبائع را با رقائق عجین می فرماید و جمع و فرق وجود پدید می‌آید، فسبحان من جعل النهایة نهایة و اللانهاية لانهایة و فرّق بینهما ثم ألّف بینهما.ح



یادداشت در تقویم قدس ۹۰:

فوق ما لایتناهی بما لایتناهی، باء عملگر است که دو وجه میتواند اولویت پیدا کند، متعلق به فوق باشد یا به لایتناهی اول.
اصل لاتناهی حیثی است چون تناهی حیثی است
لاتناهی فرد یا طبیعت؟ لاتناهی طبیعت فرق دارد، لاتناهی طبیعت صرف است.
لایتناهی بما لایتناهی، بی نهایت به توان بی نهایت است، اما همین می‌تواند در یک فرد یک طبیعت محقق شود.
عدم تزاحم فضاهای هندسی، در عدم تناهی اقلیدسی و نااقلیدسی.
عدم تناهی کم منفصل یا متصل قار و یا متصل غیر قار.
عدم تناهی در نفس کیفیات معنا ندارد.
اطلاق لابشرط مقسمی، اطلاق الاطلاق است، تازه نسبت به حدود خارجیه.
حقیقیة الاطلاق ساری در هر اطلاق، لابشرط مقسمی است.
عدم تناهی، نقطه انطلاق دارد، و آن از یک نوع حد آغاز می‌شود و مجبوریم نوع‌ها اضافه کنیم.
نامحدود یک چیز است و فراحد چیز دیگر، نامتناهی یک چیز است و فراتناهی چیز دیگر، غایت یک چیز است و فراغایت چیز دیگر، انقطعت الغایات عنه فهو غایة کل غایة و المغیّي غیر الغایة و الغایة محدودة، مغیی فرد طبیعت غیر از مغیی طبیعت اصل غایت است، بتجهیره الجواهر الله عرف ان لا جوهر له، یعنی طبیعت کننده طبائع است بلکه طبیعت کننده طبیعت است پس سابق بر اصل «الطبیعة» است.

یک فرد برابری:
۲+۳=۴+۱

یک فرد دیگر برابری:
۳+۵=۶+۲

این دو فرد، عین هم نیستند، پس محدود هستند، در چه مکانی یا زمانی هستند؟ محدودیت آنها به چیست؟




















پارادوکس های بی نهایت
نویسنده: موریس کلاین
مترجم: محمد دانش
پارادوکس های بی نهایت
در هندسه، ما نه تنها بزرگی های نامحدود را، یعنی بزرگی هایی بزرگ تر از هر بزرگی نامحدود قابل تشخیص و تعیین را، می پذیریم، بلکه این را هم می پذیریم که هر یک از این بزرگی های نامحدود به شکل نامحدودی بزرگ تر از دیگری است. این نکته ابعاد مغز ما را که در بزرگ ترین کلمه ها فقط حدود پانزده سانتی متر طول، دوازده سانتی متر عرض و پانزده سانتی متر ارتفاع دارد متحیر می کند.
ولتر
تریسترام شندی (1) ناامیدانه بهت زده شد. او نوشتن زندگی نامه خود را آغاز کرده بود و دریافت که در طول یک روز نوشتن تنها می توان شرح نصف روز از زندگی خود را بنگارد. در نتیجه، حتی اگر از هنگام تولد شروع به نوشتن می کرد و حتی اگر تا ابد زنده می ماند، نمی توانست شرح تمام زندگی خود را ثبت کند؛ زیرا در طول هر مدت زمانی که در نظر بگیریم تنها نصف زندگی اش نوشته می شد. با این حال، اگر می توانست مدت نامحدودی زندگی کند، باید می توانست تمام زندگی اش را بنویسد؛ در پایان بیستمین سال شرح ده سال نخست این زندگی، در پایان چهلمین سال شرح بیست سال اول، و همین طور تا آخر. به این ترتیب زمانی، به هر حال، شرح تمام سال های زندگی خود را ثبت می کرد. می بینیم که، بنابر شیوه استدلال تریسترام، او یا می توانست شرح حال خود را بنویسد یا نمی توانست. هر چه بیشتر درباره این پارادوکس تأمل کرد، مغشوش تر شد و سریع تر از خیر تصمیم خود گذشت.
البته ناتوانی تریسترام را در حل این باطل نما کاملاً می شد پیش بینی کرد، زیرا بر می گشت به نامحدودی زمان. مسائلی که متضمن کمیت های نامحدود می شدند همیشه بزرگ ترین ریاضی دانان و فیلسوفان را، از یونان باستان تا به حال، به زحمت می انداختند و هراسی را که دامن گیر آن ها می کردند کمتر از هراس تریسترام نبود. مثلاً، گالیله دریافت که تعداد اعداد صحیح نامحدود است؛ یعنی تعداد این اعداد، روی هم، بزرگ تر از هر عدد متناهی است که بتوان ذکر کرد. او همچنین دریافت که تعداد اعداد صحیح زوج هم نامحدود (نامتناهی) است. از خود پرسید که کدام یک از این دو مجموعه نامحدود از دیگری بزرگ تر است؟ از یک طرف به نظر می رسد که مجموعه نخست بزرگ تر باشد، زیرا تمام اعداد مجموعه دوم به علاوه بسیاری اعداد دیگر [یعنی عددهای فرد] را هم شامل می شود. از طرف دیگر، در برابر هر عددی در مجموعه اول، دقیقاً یک عدد متناظر با آن در مجموعه دوم وجود دارد، چندان که مثلاً 5 در مجموعه اول متناظر با 10 در مجموعه دوم است. همچنین، در برابر هر عدد در مجموعه دوم هم دقیقاً یک عدد متناظر در مجموعه دوم وجود دارد، چندان که 10 از مجموعه دوم متناظر با 5 در مجموعه اول است. با توجه به این « تناظر یک به یک» بین عضوهای این دو مجموعه، باید تعداد عضوهای مجموعه اول برابر با تعداد عضوهای مجموعه دوم باشد. گالیله نتیجه گرفت که مقایسه کمیت های نامحدود ممکن نیست و تأمل بیشتری در این مبحث نکرد. او می گوید: « نامحدود بودن [بی نهایت] و تقسیم ناپذیری، در ماهیتشان چنان اند که برای ما قابل درک نیستند.» لایبنیتز نیز روی این مسئله کار می کرد و نتیجه گرفت که تصور تعداد اعداد صحیح در خود تناقض دارد و باید آن را رد کرد.
چند سالی پیش از آن که سرانجام حمله ای موفق به مسئله بی نهایت (نامحدود، نامعین) صورت گیرد، کارل فریدریش گاوس، ریاضی دان توانای قرن نوزدهم، هراس از کمیت های نامحدود را به این صورت بیان کرد: « من با استفاده از قدرهای نامحدود.. که هرگز در ریاضیات قابل درک نیستند، مخالفم».
گرچه بسیاری از ریاضی دانان از تفکر بر سر مقادیر نامحدودی دست شستند یا حتی منکر آن شدند، ریاضیات تا میانه قرن نوزدهم به مرحله ای رسیده بود که دیگر نمی توانست از این مفهوم صرف نظر کند. در فاصله سال های 1600 تا 1850 ریاضیات گام های بلندی برداشته بود. در این دوره که زمانه دلاوری ها بود، ماجراجویان بزرگ اندیشه از ورطه مشکلات خیزهای بلندی را به سوی هدف هایی که نبوغ و دوراندیشی آن ها می نمود، برداشته بودند. سراسیمگان شتاب زده انتظار داشتند که دیگران پل های لازم را در حمایت از گام های پیموده شده متفکران محتاط تری بر پا دارند که خود دنباله روی آن ها بودند؟
اما این پل ها به آسانی بر پا نشدند. تلاش برای پر کردن شکاف هایی که از عصر دلاوری ها بر جای مانده بود، به دلیل پارادوکس ها، تناقض ها، و باز هم پارادوکس ها عقیم مانده بود. بدین سان، برای اندیشه های نقاد و موشکاف نیازی گریز ناپذیر به تخیل و جسارتی از نوع دیگر پدید آمد؛ از آن نوع که بتواند از شهود و «عقل سلیم» (خرد عام) صرف نظر و حتی به ورای آن سفر کرد. سرانجام این نیاز برآورده شد. هرچند نه پژوهشگران محتاط و نه سراسیمگان هیجان زده نمی توانستند شگفتی و عمق آنچه از بن بست گشایی این تلاش های نقادانه پدید می آمد، پیش بینی کنند.
گئورگ کانتور (2) نخستین حمله موفق به مسائل بی نهایت را طراحی کرد. پدرش اصرار داشت که او مهندسی بیاموزد که حرفه ای پرسودتر از معلمی بود و کانتور با این شغل زمینی آغاز کرد، ولی به مجردترین قلمروهای ریاضی رسید که زندگی اش نیز در کنار آن ها پایان یافت. با کارهای وی همان برخوردی را کردند که معمولاً با کارهای بکر و مبتکرانه می کنند- به سکوت برگزار کردن، تمسخر و حتی سوء استفاده. لئوپولد کرونکر (3)، یکی از ریاضی دانان همکار او، شریرانه بر این اثر حمله کرد. حمله ملایم تر را، که نمونه بارز و واقعی واکنش هایی است که به کار کانتور نشان دادند، هانری پوانکاره (مشهورترین ریاضی دان اواخر قرن نوزدهم) در 1908 کرد: « نسل های بعدی کتاب نظریه مجموعه ها (4) [اثر کانتور] را چون بیماری ای خواهند دید که از شر آن نجات یافته اند.» این را هم نباید از یاد برد که ریاضی دانان هم در بسیاری از اوقات بی منطق اند و تنگ نظر، و چون بسیاری از آدم ها بی انصاف؛ مثل همه تنگ نظران آن ها نیز در پس پرده راه های تثبیت شده تفکر پناه می گیرند و در همان حال بر کسانی که قاب های کهنه و فرسوده را می درند، اتهام دیوانگی می بندند. حمله در واقع ناجوانمردانه ای که به کار کانتور شد آن چنان شدید بود که سرانجام خود او نیز نسبت به کار خود تردید و دودلی پیدا کرد و به مرور او را هر چه افسرده خاطرتر کرد و این افسردگی تا آن جا پیش رفت که سرانجام او را به انحطاط عقلی و دیوانگی دچار کرد.
معنای ناآشنا و غریب منطق کانتور در سال های پایانی زندگی اش (او در سال 1918 مرد) سرانجام از جانب برخی از همکارانش به رسمیت شناخته شد. درمقابل جمله پوانکاره که در بالا نقل شد، می توان سخن داوید هیلبرت، بزرگ ترین ریاضی دان قرن بیستم، را آورد که« هیچ کس نمی تواند ما را از بهشتی که کانتور برایمان آفریده است، بیرون کند». امروزه، گسترده مقبولیت آفریده کانتور آن چنان عظیم و کامل است که بسیاری از ریاضی دانان ژرف اندیش با کمال میل مایل اند زندگی خود را صرف حل کردن مسائلی کنند که از قبول کار کانتور نتیجه می شود.
حال ببینیم که کانتور چگونه به حل مسئله کمیت های نامتناهی اقدام کرد. معروف ترین مجموعه های نامتناهی عبارت اند از مجموعه عددهای صحیح، مجموعه عددهای کسری و مجموعه عددهای حقیقی؛ یعنی اعداد صحیح، کسر و اعداد گنگی چونپارادوکس های بی نهایت به دست آوردن تعداد شیء ها (5) در چنین مجموعه هایی از طریق شمارش غیر ممکن است، زیرا روند شمارش نهایتی ندارد. از سوی دیگر، این که آن ها را نامحدود (بی نهایت) بنامیم چندان روشن کننده ابهام آن ها نیست، زیرا همه آنچه چنین تعبیری می گوید این است که آن ها محدود (متناهی) نیستند. چنین توصیفی تقریباً همان قدر اطلاعات در خود دارد که جمله « پتیکانتروپوس ارکتوس گاو نیست.» در صورت امکان، باید به این مسئله که در مجموعه های نامتناهی چند شیء وجود دارد، پاسخی اثباتی بدهیم.
البته کانتور فهمید که شمار شیء ها در یک مجموعه نامتناهی را نمی توان از طریق شمارش به دست آورد. او همچنین اهمیت عمیق تر مشاهده ظاهراً سطحی دیگری را نیز دریافت. فرض کنید که دو دسته شیء داریم؛ به طوری که هر یک شیء در دسته اول یک و تنها یک متناظر در دسته دوم دارد و برعکس. مثلاً فرض کنید که بک جوخه سرباز که هر یک تفنگی دارد از مقابل ما می گذرد؛ در این حال تناظری دقیقاً شبیه به آنچه گفتیم بین سربازها و تفنگ ها وجود دارد. رابطه بین این دو دسته، مثلاً تفنگ ها و سربازها، در زبان فنی ریاضی با عبارت « تناظر یک به یک» بیان می شود. بدیهی است که وقتی دو دسته تناظر یک به یک داشته باشند، باید تعداد اعضای برابری داشته باشند. به علاوه، برای رسیدن به این نتیجه که تعداد اعضای دو دسته برابر است، هیچ لازم نیست که آن دو دسته را بشماریم.
نبوغ عظیم کانتور در درک اهمیت اصل تناظر یک به یک و جسارت او در پیگیری نتایج حاصل از قبول این اصل نهفته است. به اعتقاد کانتور، « اگر بتوان بین دو دسته نامحدود تناظر یک به یک برقرار کرد، تعداد شیء ها در آن ها برابر خواهد بود.» مثلاً دسته (یا مجموعه) اعداد صحیح مثبت را در نظر بگیرید
... 6 5 4 3 2 1
و نیز دسته معکوس اعداد یاد شده راپارادوکس های بی نهایت .... 1
بین این دو دسته تناظر یک به یک وجود دارد که به واسطه آن هر عدد در دسته اول با یک و تنها یک عدد در دسته دوم، یعنی دسته اعداد معکوس، رابطه تناظری دارد. بنابراین تعداد شیء هایی که در این دو دسته وجود دارد برابر خواهد بود. کانتور تعدادی را که معرف کمیّت چیزها در این دسته های ویژه است باپارادوکس های بی نهایت (الف صفر) نشان داد. الف صفر یک عدد ترامتناهی [ترانسفینیت] (6) نامیده می شود.
اگر بگوییم که تعداد اعداد صحیح مثبت، درست مثل تعداد هر مجموعه از شیء هایی که با اعداد صحیح مثبت تناظر یک به یک دارد، پارادوکس های بی نهایت است، به نظر نمی رسد که پاسخی به این سوال اساسی داده باشیم که: در هر یک از این مجموعه ها چند عضو وجود دارد؟
خواننده ممکن است بگوید کهپارادوکس های بی نهایت در ذهن او بیگانه ای بیش نیست و هیچ اطلاعی در مورد تعداد اعداد صحیح مثبت به او نمی دهد. این اعتراض وارد نیست. این عددپارادوکس های بی نهایت همان قدر اطلاعات در خود دارد که عددیک بیلیون بیلیون. این عدد اخیر چیزی بیش از یک نماد نیست که معرف کمیت شیء ها در مجموعه ای خاص است؛ درست همان طور کهپارادوکس های بی نهایت نماینده تعداد اعداد صحیح مثبت است.
البته ممکن است خواننده به سرعت جواب بدهد که می تواند یک بیلیون چیزی را که در مجموعه ای وجود دارد بشمارد، اما نمی تواند پارادوکس های بی نهایت چیز را بشمارد. مشکل در این جا این است که عدد قبلی معنایی برای او دارد؛ در حالی که « عدد» اخیر معنایی در ذهن او ایجاد نمی کند. این تمایز گرچه درست است، اهمیتی ندارد. چه کسی توانسته است یک بیلیون بیلیون چیز را بشمارد؟ البته، نظراً (علی الاصول) این کار میسر است، اما نظراً این هم میسر است که به مجموعه هایی بی نهایت شیء عددی را نسبت دهیم و، درست همان طور که شناخت (7) از دو مجموعه متفاوت که هر یک از آن ها یک بلیون بلیون چیز را شامل می شود شناخت یا معرفتی است معین و باارزش، دانستن این که دو مجموعه نامحدود که تعداد شیء های هر کدام برابر است نیز شناختی معین و باارزشی است- در واقع، همان طور که خواهیم دید، شاید این شناخت با ارزش تر از دانستن شمار یک بلیون بلیون باشد.
دلیلی که به نفع تعریف کانتور وجود دارد از این هم قوی تر است.
پارادوکس های بی نهایت همان قدر معنی دارد که خودِ مثلاً عدد سه. عدد سه از آن رو معنایی در ذهن ما ایجاد می کند که در برخورد با آن به سهولت گروهی (یا مجموعه ای) از چیزهایی را که این عدد معرّف کمیت آن است به یاد می آوریم. حال آن که از نظر طفلی که شمارش را می آموزد، این عدد هیچ معنایی ندارد. اما، همان طور که طفل معنای عدد سه را در ارتباط دادن آن با سه انگشت یه سه سیب می فهمد، شخص بالغ نیز می تواند مفهوم پارادوکس های بی نهایت را با در نظر گرفتن مجموعه ای که پارادوکس های بی نهایت چیز وجود دارد درک کند. نظریه کانتور به او امکان می دهد تا دریابد که این مجموعه ها کدام مجموعه ها هستند.
حال بهتر است، با در نظر داشتن تعریف کانتور، بار دیگر به مشکلی بپردازیم که گالیله را گیج کرده بود، و مانع از آن شده بود که او درباره کمیت های نامتناهی بیندیشد. به یاد دارید که گالیله تناظر یک به یک بین مجموعه اعداد صحیح مثبت و مجموعه اعداد صحیح « زوج» مثبت را تشخیص داده، ولی نتوانسته بود این نکته را با این واقعیت که مجموعه نخست شامل تمامی عضوهای مجموعه دوم به علاوه بسیاری عضوهای دیگر، یعنی اعداد فرد مثبت، می شود، تطبیق دهد.
راه حلی که کانتور برای این معما ارائه می کند از این قرار است که می گوید مجموعه اعداد صحیح مثبت و مجموعه اعداد زوج مثبت « هر دو» پارادوکس های بی نهایت تا شیء دارند، هرچند عضوهای مجموعه دوم در مجموعه اول وجود دارد. تعداد عددهای درست و تعداد عددهای درست زوج برابر است، زیرا این دو مجموعه اعداد تناظر یک به یک دارند.
آیا بی معنی نیست که تعداد اعضای مجموعه اعداد صحیح مثبت برابر با تعداد اعضای مجموعه اعداد صحیح مثبت باشد؟ در این صورت، اگر تناظر یک به یک را اساس تصمیم گیری بر سر تساوی عددی (8) مجموعه های نامحدود بپذیریم، باید قبول کنیم این اساس معنایی ندارد. ظاهراً چنین اساسی ما را به تناقضاتی می کشاند که تمامی استدلال ما را بی معنا می کند. در این جا هضم مطلب سخت است و با واقعیت حیرت انگیز روبه روییم. در فهم کانتور از اعداد نامتناهی هیچ مشکل منطقی وجود ندارد. این که می گوییم احمقانه و بی معنی است که تعداد اعضای مجموعه اعداد صحیح زوج مثبت با تعداد اعضای مجموعه اعداد صحیح مثبت برابر باشد صرفاً عادت فکر ماست که درنتیجه کار با مجموعه های متناهی یا محدود شیءها پدید آمده است. اما این طرز فکر که در رابطه با مجموعه های «محدود»(متناهی) به کار می آید و در خدمت این جا هم یک بار دیگر در تاریخ ریاضیات تناقض بین منطق و تفکر سنتی را می بینیم و باز هم با جداشدن راه ها رودروییم. کوتاهی از ریاضی دانان پیش از زمان کانتور بود که درک نکردند باید برخی راه های تفکر مبتنی بر عادت در رابطه با کمیت ها را ترک کنند تا بتوانند مبحث اعداد نامحدود (نامتناهی) را بسط و پرورش دهند. اما اندیشه های نقاد و موشکاف قرن نوزدهم به آسانی پیشینیان خود عقب نشینی نمی کردند.
در واقع، آن ها با مشکلاتی سرشاخ شدند. بر اساس پیشنهاد برنهارد بولتسانو (9)، استاد فلسفه و یکی از پیشگامان ممتاز کانتور در شکل دادن به نظریه مجموعه های نامتناهی، یک مجموعه نامتناهی به مجموعه ای اطلاق می شود که بتواند با بخشی از خود تناظر یک به یک داشته باشد؛ در حالی که یک مجموعه نامتناهی چنین ویژگی را ندارد. به این ترتیب، مجموعه اعداد صحیح مثبت نامتناهی است زیرا بین کل این مجموعه و مجموعه اعداد صحیح زوج، که جزئی از این مجموعه است، تناظر یک به یک وجود دارد.
آیا هر مجموعه نامتناهی می تواند در تناظر یک به یک با مجموعه اعداد صحیح مثبت قرار داده شود؟ به هیچ وجه. مجموعه تمام اعداد بین 1 و 0 را که شامل اعداد کسری و گنگ می شود، نمی توان در تناظر یک به یک با اعداد صحیح مثبت قرار داد. دلیل این امر ساده است، چون می توان نشان داد که هر تناظر یک به یک مفروضی بین مجموعه اعداد صحیح مثبت و مجموعه تمام عددهای بین 0 و 1 به تناقص می انجامد. به هر حال شرح جزئیات چگونگی این تناقص را وامی گذاریم.
از آن جا که مجموعه نامتناهی تمامی اعداد بین 0 و 1 را نمی توان در تناظر یک به یک با اعداد صحیح مثبت قرار دارد، این دو مجموعه از نظر تعداد معادل نیستند. تعداد اعداد بین 0 و 1 با عدد ترامتناهی «C» نموده می شود. به همین نحو، هر مجموعه ای از شیء ها که با تمام اعداد واقع بین 0 و 1 تناظر یک به یک داشته باشد نیز مشتمل بر« C» شیء خواهد بود.
نقاطی که یک پاره خط را تشکیل می دهند مثالی است از مجموعه هایی که «C» شیء در بر دارد. یک خط و نقطه ای ثابت را، مانند O، بر روی این خط در نظر بگیرید. قرار می گذاریم که هر نقطه روی این خط با عددی که نماینده فاصله آن نقطه از O فاصله مثبت و سمت چپ آن فاصله منفی را شامل شود. پس بین اعداد از 0 تا1 و آن نقاط روی خط که این اعداد به آن منسوب اند، تناظری یک به یک وجود دارد و همین نشان می دهد که تعداد این نقطه ها برابر با «C» است.
به این ترتیب، ما «C» را به عنوان تعداد اعداد حقیقی بین 0 و 1 تعریف کرده ایم. این مجموعه با تمامی اعداد حقیقی مثبت تناظر یک به یک دارد. ما این واقعیت را از طریق روش های هندسی ثابت خواهیم کرد مجموعه اعداد حقیقی خود با مجموعه نقاط روی یک خط، مثل محور X که در هندسه مختصاتی استفاده می شود، تناظر یک به یک دارد. حال، در نظر بگیرید که نقاط روی خط L (شکل 1) و واقع در طرف راست نقطه O، نماینده تمام اعداد حقیقی مثبت باشد و OA را واحد طول در نظر بگیرید؛ به طوری که نقاط واقع بر آن با اعداد حقیقی واقع بین 0 و 1 تناظر یک به یک داشته باشد.
پارادوکس های بی نهایت
شکل 1. تناظر یک به یک بین نقاط روی پاره خط واحد و نقاط روی یک نیم خط
چهارگوشی همچون OABC می کشیم و قطر OB را رسم می کنیم. حال هر نقطه ای مانند P را که سمت راست O باشد در نظر بگیرید و CP را تا آن جایی رسم کنید که OB را در نقطه Q قطع کند. از نقطه Q، عمودی بر L ترسیم کنید تاپارادوکس های بی نهایت به دست بیاید. با توجه به تناظری که از طریق این طرز ترسیم تعیین شده، هر نقطه مانند P در جایی بر L و در سمت راستO با یک و تنها یک نقطهپارادوکس های بی نهایت بر OA متناظر است؛ یعنی اگر، برعکس، با نقطه ای مانندپارادوکس های بی نهایت که روی OA است شروع و عمودی بر OA در پارادوکس های بی نهایت رسم کنیم، این عمود OB را در نقطه Q قطع خواهد کرد. سپس CQ را رسم می کنیم و هر جا که CQ خط L را قطع کند، نقطه P را که متناظرپارادوکس های بی نهایت است به دست آورده ایم. از آن جا که نقاط تشکیل دهنده OA با تمام نقاط سمت راست نقطه Q، بر روی خط L، تناظر یک به یک دارند، تعداد نقاط روی OA و نیز روی تمام نیم خط L برابر با «C» است. به زبان حساب، مجموعه اعداد حقیقی مثبت با مجموعه اعداد حقیقی بین 0 تا 1 تناظر یک به یک دارد و، از این رو، تعداد اعداد حقیقی مثبت برابر «C» است.
تعداد نقاط بر یک پاره خط و تعداد نقاط روی تمام یک نیم خط، علی رغم این واقعیت که طول دومی نامحدود است و اولی تنها یک واحد طول به شمار می آید، برابر است. در واقع OA می تواند دو واحد یا هر شماره « معین» واحد طول را شامل شود، ولی این درنتیجه ای که گرفته ایم تأثیری ندارد. پس تعداد نقاط روی هر پاره خطی همیشه « C» است.
این نتیجه گیری نیز به نظر می رسد نظیر دیگر نتایجی که پیش تر ثابت شدند درک شهودی ما را می آزارد. اما به چه حقی ما انتظار داریم در پاره خط بزرگ تر از این دو پاره خط تعداد نقطه بیشتری وجود داشته باشد؟ کدام شناخت دقیق از نقطه و خط مدافع چنین توقعی است؟ در هندسه اقلیدسی لازم نیست که هر پاره خط تعداد نقطه معینی داشته باشد، زیرا بر اساس این هندسه هر پاره خطی را، هر قدر هم که کوچک باشد، می توان نصف کرد؛ اما این هندسه چیزی راجع به تعداد نقطه بر یک پاره خط نمی گوید. بر اساس نظریه کانتور این شناخت را پیدا می کنیم که « تعداد نقاط هر دو پاره خطی، صرف نظر از طولشان، با هم برابر است». این نتیجه گیری نه تنها منطقاً درست است، بلکه امکان پاسخ دادن به پرسش هایی گیج کننده در رابطه با ماهیت فضا (مکان)، زمان و حرکت را به ما می دهد که دو هزار سال فلاسفه را درمانده کرده بود.
شهود ما از زمان و مکان این فکر را القا می کند که هر طول و هر فاصله زمانی را، هر قدر هم کوچک باشد، باز هم می توان تقسیم کرد. فرمول بندی ریاضی مفاهیم این ویژگی را به حساب می آورد. مثلاً هر پاره خط را می توان با روش ترسیمی دقیق اقلیدس به دو قسمت کاملاً مساوی تقسیم کرد. خط ریاضی ویژگی های دیگری نیز دارد: هر طول- یعنی خط- از نقطه ها تشکیل شده است و نقطه هیچ بُعدی ندارد. از این گذشته، ارتباط این نقطه ها با یکدیگر مانند ارتباط عددها در نظام اعداد است. توجه کنید که بین هر دو عددی بی نهایت عدد دیگر وجود دارد؛ مثلا، بین 1 و 2 اعدادپارادوکس های بی نهایت و همین طور تا آخر. به همین نحو، بین هر دو عدد بر یک خط، تعداد نامحدودی نقطه دیگر هست. به همین ترتیب، زمان به مفهوم ریاضی از لحظه ها (آن ها) تشکیل شده است که هیچ کدام از آن ها دیرند یا تداوم (10) ندارد و همچون عددها در نظام اعداد از پی یکدیگر می آیند. پس ساعت دوازده یک لحظه است و هر شمار از ثانیه های پس از ساعت دوازده لحظه ای متناظر با خود دارد که می توانیم آن را درک کنیم. بنابراین، این نکته که شمار نامحدودی بین هر دو لحظه ای وجود دارد، در مورد لحظه ها نیز همچون نقطه های روی یک خط درست است.
در این مفهوم های ریاضی از طول (مکان) و زمان مشکلاتی وجود دارد که نخستین بار فیلسوف یونانی، زنون (11)، آن ها را یادآور شد و ما اینک می توانیم این مشکلات را با استفاده از نظریه مجموعه های بی نهایت (نامحدود) حل کنیم. اجازه دهید پارادوکس آشیل (اخیلس) و لاک پشت زنون را به صورتی که برتراند راسل مطرح کرده است در نظر بگیریم.
قرار است آشیل و لاک پشت مسابقه دویی برگزار کنند که در آن لاک پشت کندپا اجازه دارد از مسافتی جلوتر از نقطه شروع آشیل حرکت را آغاز کند. پایان مسابقه وقتی است که آشیل از لاک پشت جلو بیفتد. در هر لحظه از مسابقه، آشیل و لاک پشت در نقطه ای از مسیر خود هستند و هیچ یک از آن ها دو بار در یک نقطه نخواهد بود. به این ترتیب، چون تعداد لحظه های مسابقه برای هر دو آن ها برابر است، لاک پشت از همان تعداد نقاطی می گذرد که آشیل. از طرف دیگر، آشیل به شرطی برنده خواهد شد که از تعداد نقاط بیشتری نسبت به لاک پشت بگذرد، زیرا باید مسافت بیشتری را طی کند. پس، آشیل هرگز نمی تواند از لاک پشت جلو بیفتد.
بخشی از این استدلال درست است. باید قبول کنیم که لاک پشت از لحظه شروع مسابقه تا پایان از نقاط بسیاری، همچون آشیل گذشته است، زیرا در هر لحظه از مدت زمانی که در طی آن مسابقه داده اند هر کدام دقیقاً یک جایگاه را اشغال می کند. پس تناظری یک به یک بین مجموعه نامحدود نقاطی که لاک پشت و مجموعه نامحدود نقاطی که آشیل پیموده است وجود دارد. اما، حکم به این که چون آشیل باید مسافت بیشتری را طی کند تا از لاک پشت مسابقه را ببرد، درست نیست؛ زیرا، همان طور که می دانیم، تعداد نقاط روی پاره خطی که آشیل باید برای برنده شدن بپیماید، به اندازه تعداد نقاط پاره خطی است که لاک پشت باید بپیماید. باز هم، باید توجه داشته باشیم که نقطه های روی پاره خط ربطی به طول آن ندارد. نظریه مجموعه های نامتناهی کانتور، در این جا هم، مسئله را حل می کند و نظریه ریاضی ما را از زمان و مکان نجات می دهد. زنون در نبرد علیه تقسیم پذیری نامحدود زمان و مکان، با مطرح کردن پارادوکس های دیگر، مخالفانش را مغلوب کرد و تنها امروزه است که می توان، بنا بر برداشت های جدید از زمان و مکان و نظریه مجموعه های نامتناهی، پاسخی قانع کننده به آن ها داد. به پیکانی ضمن پرتاب به طرف هدفی دقت کنید. این تیر در هر لحظه جایگاه مشخص و معینی دارد. زنون می گوید « درست در لحظه بعد» پیکان در جایی دیگر است. چه هنگام پیکان از یک جایگاه به جایگاه دیگر می رود؟
چگونه تیر درست لحظه بعدی به جایگاه جدید می رسد؟ پاسخ این است که لحظه بعدی وجود ندارد؛ در حالی که مسئله فرض می کند وجود دارد. لحظه ها از پی هم همچنان می آیند که اعداد نظام اعداد و، درست همان طور که عدد بزرگ تر بلافاصله بعد از 2 تا پارادوکس های بی نهایت وجود ندارد، از هر لحظه ای که در نظر بگیریم، لحظه بعدی ای وجود ندارد. بین هر دو لحظه ای شماری نامحدود از لحظات حدواسط وجود دارد.
اما، این تبیین تنها کاری که می کند این است که مشکلی را به جای مشکلی دیگر می نشاند. پیش از آن که پیکانی از یک جا جدا شده و به جایی در مجاورت آن برسد، باید از تعداد نامحدودی جا در فاصله بین دو جا بگذرد که هر جا متناظر با هر یک از بی نهایت لحظه حدواسط است. چگونه تیر می تواند به آن جای مجاور برسد، وقتی که باید از شمار نامحدودی جای واقع بین دو جا بگذرد؟ پاسخ به این پرسش نیز مشکلی به حساب نمی آید. یک جسم برای پیمودن یک واحد طول باید از تعداد نامحدودی جا بگذرد، اما زمان پیمودن این تعداد می تواند بیش از یک ثانیه نباشد؛ چرا که حتی در یک ثانیه هم تعداد نامحدودی لحظه وجود دارد.
هر چند در مورد حرکت تیر مشکل بزرگ تری وجود دارد. نوک پیکان در هر لحظه از حرکت خود جای معینی را اشغال می کند. درست در آن لحظه که این جا اشغال می شود، پیکان نمی تواند حرکت کند؛ زیرا لحظه هیچ دیرند یا تداومی ندارد. پس، در هر لحظه، پیکان در حال سکون است. از آن جا که این نکته در رابطه با هر لحظه از حرکت پیکان صحت دارد؛ پیکان متحرک همواره در حال سکون است. این پارادوکس اصولاً تکان دهنده است؛ تا حدی که به نظر می رسد به خود منطق نیز اعتنایی ندارد.
نظریه جدید مجموعه های نامحدود راه حلی به همین اندازه تکان دهنده را امکان پذیر می کند. حرکت، تسلسلی از سکون هاست. حرکت چیزی نیست جر تناظر بین جاها و لحظه ها که هر کدام مجموعه ای نامحدود تشکیل می دهند. در هر لحظه ای که طی آن جسم در حال « حرکت» است، جای معینی را اشغال می کند و می توان گفت که جسم در حال سکون است.
آیا این مفهوم ریاضی از حرکت درک ما را از پدیده فیزیکی حرکت برآورده می کند؟ آیا شهود ما دال بر آن نیست که حرکت چیزی بیشتر از قرار یک جسم در لحظه های مختلف در جایگاه های متفاوت است؟ در این جا نیز درک شهودی ما نمی تواند زیاد مطمئن باشد. یک فیلم سینمایی چیزی بیش از یک رشته تصاویر ثابت بر یک پرده نیست که با میزان شانزده تصویر در هر ثانیه از مقابل چشم می گذرد؛ یعنی فیلم سینمایی تشکیل شده است از تصاویر بی حرکتی که با آن قدر سرعتی به چشم نموده می شود که خیال کاذب حرکت را ایجاد می کنند. پس، این حرکت چیزی بیش از تسلسلی از سکون ها نیست. نظریه ریاضی حرکت از لحاظ شهودی برای ما قانع کننده تر است، چون به وقوع تعداد محدودی « سکون» در هر فاصله زمانی امکان می دهد. از آن جا که این مفهوم حرکت پارادوکس ها را نیز پاسخ می گوید، باید کاملاً پذیرفتنی باشد.
جبر اعداد ترامتناهی نیز ویژگی های جالبی دارد که در حل مشکلات دیگری از ایده مان راجع به زمان و مکان به ما کمک می کند. به دو مجموعه زیر توجه کنید:
......... 7 6 5 4 3 2 1 (الف)
........ 12 11 10 9 8 7 6 (ب)
به وضوح معلوم است که این دو مجموعه تناظر یک به یک دارند، زیرا به ازای هر عدد در مجموعه (الف) عددی در مجموعه (ب) وجود دارد و برعکس. پس، تعداد شیء های این دو مجموعه با هم برابرند. این تعداد
پارادوکس های بی نهایت است، زیرا این عدد تعداد عددهای صحیح مثبت است، هر چند از طرف دیگر بدیهی است که مجموعه دوم تعداد 5 تا کمتر از مجموعه اول شیء در بردارد، یعنی:
پارادوکس های بی نهایت نکته کنجکاوی برانگیزی را که معادله (1) نشان می دهد (یعنی این که اگر ما عددی متناهی را از کمیتی نامتناهی کم کنیم، همچنان کمیتی نامحدود در اختیار داریم)، لوکریتوسِ (12) رومی به نحوی که، هر چند به این ایجاز نیست، گویاتر است، بیان کرده است:
هر قدر که می خواهید زاد و ولد کنید. با تمام این ها مرگ جاودانه در انتظار شماست، و نه چندان زمان درازی طول بکشد که آن ها امروز را با پایان دادن به زندگی خود آغاز کند، بیش از آن کس وجود نخواهد داشت که ماه ها و سال ها پیش مرده است.
از آن جا که مجموعه اعداد صحیح مثبت را می توان در تناظر یک به یک با مجموعه اعداد صحیح زوج مثبت قرار داد و نیز از آنجا که تعداد اعداد صحیح زوج مثبت برابر با اعداد صحیح فرد مثبت است، شمار این اعداد صحیح فرد درست مثل شمار آن اعداد صحیح زوج پارادوکس های بی نهایت خواهد بود. اما مجموعه اعداد صحیح مثبت دقیقاً به اندازه مجموعه اعداد صحیح زوج و اعداد صحیح فرد است. این مجموعه های دوم
پارادوکس های بی نهایت شیء (عضو) دارند؛ در حالی که مجموعه اعداد صحیح مثبتپارادوکس های بی نهایت عضو دارد. پس: پارادوکس های بی نهایت
برای حل مشکل ترایسترام شندی، اگر جداً مشکلی ایجاد شده باشد، می توانیم از معادله (2) استفاده کنیم. مشکل تریسترام این بود که در طول یک رو تنها می توانست نصف روز از زندگی اش را بنگارد؛ به طوری که ظاهراً حتی اگر تا سالیانی به شمار نامعین زندگی می کرد، نمی توانست بیش از نیمی از زندگی خود را ثبت می کرد. از طرف دیگر، این نکته را به وضوح می دانست که اگر تا ابد زندگی کند، سرانجام روزی تمام زندگی اش را ثبت می کرد. نظریه ریاضی کمیت های نامحدود مدافع این استدلال اخیر است. اگر او به اندازه
پارادوکس های بی نهایت
پارادوکس های بی نهایت و، از این رو، ترایسترام می تواند این نیک بختی را داشته باشد که شرح حال خود را کامل کند.
معادلاتی چون (1) و (2) که شامل
پارادوکس های بی نهایت هستند از آن رو به نظر ما درست نمی آیند که عادت کرده ایم بر حسب آنچه در رابطه با اعداد متناهی معتبر است، بیندیشیم. با این حال، این چیزی غیر منطقی نیست. لزومی ندارد ویژگی هایی که اعداد متناهی دارند اعداد ترامتناهی نیز داشته باشند و برعکس. منطق این جمله با منطق این گفته تفاوتی ندارد که چون گربه و سگ هر دو حیواناتی چهار پا هستند، حکمی وجود ندارد که درباره گربه ها درست باشد و درباره سگ ها درست نباشد.
طرح مختصری که از نقش کانتور در مطالعه کمیت های نامحدود ارائه کردیم پاره ای از نتایج پرارزشی را که نظریه او به آن منجر شده است، نشان می دهد. اما مبحث سر دیگری نیز دارد که شایسته توجه است.
مفهوم بنیادی در مطالعه کمیتهای نامحدود، مفهوم یک گروه یا رده، یا مجموعه همچون مجموعه ای از اعداد، مجموعه ای نقطه های یک خط و مجموعه ای از لحظات زمان است. متأسفانه این مفهوم اساسی و ظاهراً ساده مشکلات بسیاری در خود دارد که تاکنون به آن توجه نکرده ایم. بهتر است برای این ادعای خود مثال هایی بیاوریم.
مثال نخست ما موردی کلاسیک است. این مثال در متون کهن از جمله « عهد جدید» به شکل های مختلف ظاهر شده است. در رساله قدیس بولس حواری، خطاب به تیتوس، در مورد کرتی ها آمده است: « یکی از خود آنان، حتی پیامبری از خودشان، گفته است که اهل کرت همیشه دروغ گو، شیطان صفت، و موذی اند. این گواه بر حق است». توهینی که در این جا به اهالی کرت شده، به طور کلی، در چنین قالبی ابراز شده است که « اپیمنیدس (13) کرتی می گوید که مردم کرت همیشه دروغ می گویند.» ولی اگر اپیمنیدس درست بگوید، او یک حقیقت را گزارش کرده است و بنابر این حقیقت ندارد که مردم کرت همیشه دروغ می گویند. از طرف دیگر، طبق اظهار خود اپیمنیدس او یک کرتی است و بنا به اظهار خودش، چون کرتی است، دروغ گوست؛ پس این گفته اش هم که کرتی ها دروغ می گویند، نیز یک دروغ است. در هر حال، اپیمنیدس به تناقص دچار شده است. ظاهراً، او نمی تواند منطقاً اظهار کند که همه کرتی ها دروغ گویند؛ حتی اگر مطلب از همین قرار باشد، منطق دهان او را می بندد.
حالا به داستان ریش تراش شریف روستا گوش کنید که در آگهی اش با کمال غرور ادعاکرده که گرچه ریش کسانی که خود ریش خودشان را می تراشند نمی تراشد، ریش تمام کسانی را که خود ریش خودشان را نمی تراشند می تراشد. روزی، در حالی که داشت صورتش را صابون می زد، ناگهان به این فکر افتاد که آیا او خودش ریش خودش را می تراشد یا نه. اگر چنین باشد او از جمله کسانی خواهد بود که خودشان ریش خود را می تراشند؛ پس، او طبق آگهی خودش نباید ریش خودش را بتراشد. از طرف دیگر، اگر او خود ریش خودش را نتراشد، آگهی خود او اعلام می کند که او چنین می کند. خلاصه این که، اگر او ریش خود را بتراشد، نباید چنین کند و اگر ریش خودش را نتراشد، او این کار را می کند. بیچاره ریش تراش گروهی از مردم را تعیین کرده بود که خود او را هم شامل می شود و هم نمی شود. متأسفانه ما باید ریش تراشمان را به صورت صابون زده و تیغ حیرانی به دست رها کنیم تا خود راهی برای گریز از مخمصه ای بیابد که آفریده است.
مشکلی از این قبیل را می توان در مثال نسبتاً جالب زیر یافت. واژه « تک سیلابی» تک سیلابی نیست؛ در حالی که کلمه « چند سیلابی» چند سیلابی است. کلمه « تک سیلابی» خودش را توصیف نمی کند؛ حال آن که کلمه « چند سیلابی» چنین نیست. بد نیست توافق کنیم تمامی کلماتی را که مثل کلمه « تک سیلابی» نمی توانند خودشان را توصیف کنند، نامتجانس بنامیم. به این ترتیب، می توانیم بگوییم که هر واژه همچون X نامتجانس است؛ در صورتی که X خودش X نباشد. اما فرض کنید که x نامتجانس است. در این صورت ما داریم چنین می گوییم که واژه « نامتجانس»، نامتجانس است اگر خودِ «نامتجانس» نامتجانس نباشد. به عبارت دیگر، داریم می گوییم که چیزی، چیزی است، اگر خود آن، آن چیز نباشد. تقریباً تمام مطلبی که در این حال می توان گفت این است که نکته ای در این جا غلط است.
در تمامی این پارادوکس ها، رده (یا مجموعه) متمایزی از چیزها وجود دارد: مجموعه کرتی ها، مجموعه کسانی که بناست ریش آنها تراشیده شود و مجموعه کلمات نامتجانس. تحلیل این مثال ها نشان می دهد که جمله هایی که درباره این مجموعه ها هستند در خود تناقض دارند. ولی این دقیقاً همان مشکلاتی است که کانتور با به کار گرفتن مفهوم مجموعه به قلمرو ریاضیات وارد کرده است. پس عجیب نیست که کار او توفانی از نقد و خرده گیری برانگیخت و موضوع مباحثات خشمگینانه ای شد.
ابراز این مطلب دردناک است که مشکلات کاملاً برطرف نشده اند. از آن جا که این مشکلات مسائلی را شامل می شوند که در مرز منطق و ریاضیات قرار دارند، هر یک از چند رهیافت متفاوتی که نسبت به این دو مبحث وجود دارد مدعی درستیِ نحوه برخورد خود هستند؛ هر چند هیچ یک از این رهیافت ها تاکنون خرسند کننده از آب در نیامده است. ریاضی دانان امروزه به مکاتب فکری مختلف تقسیم شده اند و هر یک از فلسفه ای که از بنیادهای ریاضیات ساخته و پرداخته است دفاع می کند.
این نکته را باید افزود که همه ریاضی دانان به تردید ننشسته اند. از این گذشته، لزومی نیست که حتی آن بخش هایی که موضوع مناقشه و جدل اند، حتی به صورتی موقت کنار گذاشته شوند. خوشبختانه برای این بخش ها مجوزهای پراگماتیستی ای در اختیار داریم. درست همان طور که درستی حساب دیفرانسیل و انتگرال در تمام آن دورانی که برای تولید قوانین با عظمت از آن استفاده می شود مورد تردید بود، امروزه نیز این قضایای مشکوک عملاً به کار می روند و بسیار مفید از کار در آمده اند. تاریخ حساب دیفرانسیل و انتگرال نیز پشتوانه ای دلگرم کننده است؛ زیرا، درست همان طور که مشکلات آن سرانجام حل شدند، می توان انتظار حل مشکلات نظریه مورد بحث را نیز داشت.
این تردیدها حداقل به ریاضیدانان فرصت داده است که در کار خود مروری کنند. مور (14)، ریاضی دانِ برجسته امریکایی، با درک این واقعیت که هر عصر مسائل آزارنده ای دارد که آفریده هایش بدان منجر می شوند، گفته است: « به سختی آنچه زمانی آرامش بخش بود، رسیده ایم». دیگر ریاضی دانان بدبینی بیشتری ابراز کرده اند. یک برهان، وقتی به ابهامی می کشد، به ما می گوید که تردید خود را بر کجا متمرکز کنیم؛ در حالی که منطق چیز دیگری می گوید- منطق فن رفتن به راه خطاست، آن هم با کمال اطمینان.
با وجود پارادوکس هایی که کار کانتور به آن ها منجر شد و هنوز باید در انتظار روشن شدن تام و تمام آن ها بود، بسیاری از ریاضی دانان به این باور رسیده اند که وی تنها راه پیشرفت واقعی ممکن را هموار ساخته است. ریاضی دان به کمک بصیرت ها و شهود خود می آفریند و این منطق است که در مرحله بعد پیروزی های شهود را تأیید می کند. این آن پاکیزگی ای است که ریاضیات می کوشد تا به یُمن آن ایده هایش را سالم و سلامت نگه دارد. از این گذشته، کل این ساختار بر زمینه غیر قطعی که درک شهودی انسان است، تکیه دارد. گهگاه این جا و آن جای یک شهود کنده می شود تا ستونی محکم از تفکر در آن جای گیرد؛ هر چند خود این ستون بر شهودی عمیق تر، و شاید نه به این وضوح تعریف شده، تکیه دارد. اگر چه روند جانشین کردن اندیشه های دقیق به جای شهودها آن ماهیت بنیادی را که ریاضیات در نهایت بر آن تکیه دارد تغییر نمی دهد، این روند به بنای ریاضیات استحکام می بخشد.
پارادوکس ها در آنچه شرحش گذشت آن چنان بسیار بوده و هستند که خواننده می تواند نظریه اعداد نامتناهی را نوعی «تفرج» ریاضی محسوب کند. این چیزی است کاملاً متمایز از ارزش داوری بی غرض. آنچه بیشتر به چشم می خورد، این است که چگونه تفکر دقیق در رابطه با محاق یکی از مبهم ترین و لمس ناپذیرترین شهودها به کار رفته است. کانتور، با دقیق کردن تصور کمیت، بدان گونه که در مورد مجموعه های نامحدود به کار رفت، بندهای مشکلات فلسفی ای را گشود که از روزگار ارسطو تا عصر ما ناگشوده باقی مانده بودند.
نظریه اعداد نامتناهی تنها یکی از آفرینش های متفکران نکته سنج قرن نوزدهم است.
مضامین این نظریه کمابیش عجیب و غیر عادی است، اما، به هر حال، هم منطقی است و هم مفید. آفرینش ریاضی، برای مبتدیان شاید از این هم عجیب و غریب تر به نظر رسد. با این حال، آن قدر اعتبار و قدرت داشته که توانسته تفکر ریاضی علمی و فلسفی را زیرورو کند. چنین به نظر می رسد که انگار ریاضی دانان قرن نوزدهم ناچار شدند به مرور هر چه بیشتر از مسیرهای بهنجار تفکر دور شوند تا به ریاضیات آن قدرت و دقتی را ببخشند که نخست یونانیان به آن داده بودند، اما ریاضی دانان قرن هفدهم به خاطر شتاب در همگامی با فعالیت علمی توانایی دیدن آن را از دست دادند.

پی نوشت ها :
1- Tristram Shandy
2- Georg Cantor، ریاضی دان آلمانی (1845- 1918)
3- Leopold Kronecker
4- Mengenlehre
5- objects
6- transfinite number
7- knoweledge
8- numberical equality
9- B. Bolzano، فیلسوف چک (1781- 1848)
10- duration
11- Zeno، زنون الئائی، فیلسوف یونانی (ح 490- ح 430)
12- Lucretius، شاعر و فیلسوف رومی (99- 55؟ ق م)
13- Epimenides، فیلسوف کرتی در قرن هفتم قبل از میلاد
14- Eliakim Hasting Moore، ریاضی دان امریکایی (1862- 1932)
منبع :کلاین، موریس؛ (1388)، نقش ریاضیات در فرهنگ غرب، ترجمه محمد دانش، تهران: شرکت انتشارات علمی و فرهنگی.





****************
ارسال شده توسط:
حسن خ
Wednesday - 24/4/2024 - 13:53

فوق ما لا یتناهی بما لا یتناهی

اصول فلسفه و روش رئالیسم، ج 5، ص 144

اشاره - آخرين بحث فلسفى - در صفات خداى هستى به نظريه‌اى منتهى شده - كه از سطح سخنان گذشته - بسى بالاتر است و آن اينست كه - چون هستى خدا از هر قيد و شرطى مطلق است - و هيچگونه حدى در آنجا نيست - پس خود اين تحديد هيچ گونه حدى در آنجا نيست - نيز از آنجا منفى است - و از اين روى وجود ايزدى از هر تحديد مفهومى نيز بالاتر - و هيچ مفهومى حتى اين مفهوم نمى‌تواند - بوى احاطه نموده و تمام حاكى بوده باشد -. بيشتر از اين اندازه را - بايد از جاهاى ديگر سراغ گرفت

 

 

 

جلسه توحید صدوق، ٢٣/ ١٢/ ١٣٩۶

تجرید خداوند از وصف عدم تناهی و رفع تناقض در آن

شاگرد: این‌که می‌گوییم خداوند بی‌نهایت است، این تکییف نیست؟ این‌که می‌گویند لا اسم و لا رسم له، فلا حدّ له، این تکییف نیست؟

شاگرد ٢: می‌توان به این صورت گفت: آن کیفیت­هایی که با تناهی ملازمت دارد را می‌توان نهی کرد؟ اگر بتوانیم کیفیت­هایی را تصویر کنیم که با نامتناهی سازگار است ... .

استاد: مبنای روشن کلاسیک همین است. یعنی «له کیفیة تلیق بجنابه». چون وقت تمام شده است، اشاره­وار عرض می‌کنم. در جلد پنجم اصول فلسفه، سه – چهار سطر دارند که از جاهای جالب آن­جا است. می‌گویند: تا حالا هر چه گفتیم، ثابت کردیم وجود مطلق، وجود غیر متناهی است. بعد می‌گویند به شما بگوییم که خود همین غیر متناهی بودن، خودش حد است. اشاره‌ای می‌کنند. اصلاً خود غیر متناهی بودن، حدّ است. یعنی چه؟ این خیلی ظریف است.

ما باید این را بدانیم که اساساً لایتناهی را در هرچه فرض بگیرید، خودش حدّ است. جلسه­ی دیگر یادآوری کنید تا عرض کنم چطور است که عدم تناهی حدّ است. خدای متعال فوق ما لایتناهی بما لایتناهی است. لذا جمله‌ای که حکماء دارند، نمی‌گویند ما لا یتناهی است. ما لا یتناهی بما لایتناهی، یعنی بی‌نهایت به توان بی‌نهایت. حکماء می‌گویند: بی‌نهایت به توان بی‌نهایت، صادر اول است. او فوق ما لایتناهی بما لا یتناهی است. البته باء را به ما لا یتناهی بزنید یا به فوق بزنید، هر دو وجهش هم هست.

در مورد کیفیت قبلاً صحبت شده بود. در توحید صدوق این حدیث آمده بود: «النعوت نعوت الذات لاتلیق الا به و اسمائها جاریة علی المخلوقین»18؛ می‌گفتیم صفات فوق العرش. آن مانعی ندارد. اما آن فضا، فضای دیگری است. تا از این طریق این بحث‌ها صاف نشود، نمی‌توانیم به آن­جا برسیم. باید این‌ها صاف شود تا ببینیم ... . فعلاً آن چیزی را که می‌فهمیم، درک کنیم که چطور است که لایتناهی حدّ است. لایتناهی که حدّ نیست! این تناقض است! شما می‌گویید: حدّ نیست. بعد می‌گویید محدود می‌شود؟! همانی که در روایت توحید صدوق خیلی زیبا خود امام علیه السلام شروع کردند. خود حضرت فرمودند: «اللّه‌اکبر» به چه معنا است؟ گفت: یعنی «اللّه‌اکبر من کل شیء». حضرت علیه السلام فرمودند: «حدّدته». خیلی زیبا است. من دارم می‌گویم: «اکبر من کل شیء»، چطور حدّدته؟! این رابطه خیلی مهم است. بعد عرض کرد پس چه بگویم که لم أحُدّ؟ فرمودند بگو: «اللّه ‌اکبر من أن یوصف ولو یوصف بأنّه لایوصف». اکبر من أن یوصف؛ یکی از توصیفات هم این است که لایوصف.

شاگرد: این آخرش هم در روایت هست؟

استاد: خیر؛ آخرش را طلبگی عرض می‌کنم!

 

 

سلسله درس­گفتارهای شرح توحید صدوق؛

جلسه­ ی نهم: 15/1/1397 ش.

الف) ترتب ثبوتی تحدید عقلی، تکییف وهمی و تصویر خیالی

عبارتی که بحث می‌کردیم، به این­جا رسید: سه حکم «تحدید»،‌ «تکییف» و «تصویر» را بیان کردند. حضرت علیه السلام فرمودند:

«محرم على بوارع ثاقبات الفطن تحديده و على عوامق ناقبات الفكر تكييفه ، وعلى غوائص سابحات الفطر تصويرة»1.

«تحدید»، «تکییف» و «تصویر» آیا ثبوتا بر همه مترتب است یا خیر؟ این سؤالی بود که شاید جلسه­ی قبل پی­چویی کردیم. احتمالی هم به ذهن من آمد و عرض کردم. به عبارت «لا تحويه» هم ظاهراً وارد نشدیم.

عرض کردم «تحدید» چه بود؟؛ وقتی ذهن انسان بخواهد مراحلی را طی کند، اول تحدید می‌کند، بعد تکییف می‌کند (از کلی به جزئی می‌رود)؛ از یک نحو سیر عقلی باطنی، بدون این‌که خودش بفهمد، عقل او تحدید می‌کند، وهم او تکییف می‌کند و قوه­ی حس او می‌بیند و تصویر می‌کند؛ یا این‌که قوه­ی خیال او تصویر می‌کند. قوه­ی حس و قوه­ی خیال، نزدیک هم هستند. حس توسط قوه­ی خیال است که حس می‌کند و لذا است که وقتی قوه­ی حس، حس کرد، قوه­ی خیال قدرت دارد که آن محسوس را دوباره احضار کند. صورتی که چشم ما دیده بود را، بعد از این‌که دوباره به ذهن می‌آوریم، می‌گوییم تخیل کردیم؛ قوه­ی خیال آن را احضار کرد.

ب) نفی تحدید خداوند و اولیت نفی در وهم و خیال

این یک جور است. آیا ممکن است برعکس باشد یا خیر؟ یعنی «تحدید»، «تکییف» و «تصویر» به‌معنای دیگری باشد؟ «تحدید» اقدم باشد، «تکییف» ادون باشد و «تصویر» ادونِ ادون باشد؟ یعنی مرحله­ی ثبوتی نباشد، مرحله شرافتی باشد. چرا؟؛ به‌خاطر این‌که می‌خواهم بگویم فضلاً از او. عقل نمی‌تواند خدای متعال را تحدید کند، فضلاً از وهم، فضلاً ‌از خیال. این کلمه­ی فضلاً را که می‌آوریم، یعنی نمی‌خواهیم بگوییم در این­جا ترتیب صورت می‌گیرد، بلکه می‌خواهیم بگوییم از نظر دون و مرتبه­بودن، از آنچه که الیق است، شروع می‌کنم. آنچه که اگر قرار است درکی بکند، عقل است. «محرّم على بوارع ثاقبات الفطن تحديده»؛ عقل نمی‌تواند با این خصوصیات او را تحدید کند. خُب، عقلی که بالاترین قوه­ی درّاکه­ی بشر است، حرام است تحدید کند.

«و على عوامق ناقبات الفكر تكييفه»؛ وقتی فطن ثاقبه­ی بالا بالا، حرام است که تحدید کند، دیگر نوبت به پایین‌تری­ها نمی‌رسد. فضلاً از «عوامق ناقبات الفکر تکییفه». این بیان، کاملاً با بیان جلسه­ی قبل تفاوت می‌کند. در آن بیان از اول به ترتیب ثبوتی تحدید می‌کرد، ثم تکییف، ثم تصویر، در این­جا، خیره، سه چیز مستقل است و حضرت علیه السلام از حیث مراتب و شرافت می‌گویند. «بوارع ثاقبات الفطن» نمی‌توانند تحدید کنند، خُب، معلوم است که «عوامق ناقبات الفکر» فضلاً نمی‌تواند تکییفش کنند و فضلاً «غوائص سابحات النظر تصويره». وقتی در آن بالا تحدید نشود، این‌ها هم در او ممکن نیست. این دو وجه برای «محرّم تحدیده، تکییفه، تصویره».

وجود خداوند فوق ما لایتناهی بما لا یتناهی است

متعلق «باء»، کلمه­ی فوق یا لایتناهی است؟

بحثی بود که آیا تحدید و محدودیت ...؛ این‌که خدای متعال را نمی‌توان تحدید کرد، پس تحدید برای او، معنا ندارد. تحدید به‌معنایی که آن روز عرض کردم؛ شما می‌خواهید از بی‌نهایت، محدودش کنید تا بعد از محدود کردن، تکییفش کنید و بعد از تکییف، تصویرش کنید. آیا معنای آن، محدودیت این بود که چون خدای متعال حدی ندارد، نمی‌توان او را تحدید کرد؟ یعنی غیر متناهی است. آیا به این معنا چون عقل نمی‌تواند خدای متعال را تحدید کند، یعنی پس او غیر محدود به این تحدید عقل هست؟ آن روز عرض کردم که خیر. اصلاً فرمایش امیرالمؤمنین علیه السلام، ناظر به این نیست. نمی‌خواهند بفرمایند که چون عقل، ابتدا از آن لا یتناهی تحدید می‌کند، می‌تواند درک کند. درک، احاطه می‌خواهد. اول از آن لایتناهی، او را محدود می‌کند. بعد به کیفیاتی او را هماهنگ می‌کند و او را آغشته می‌کند، بعد قوه­ی خیال او را تصویر می‌کند. آیا وقتی عقل محرّم است، یعنی آن تحدیدی که عقل می‌کند او در همان بستر، لامحدَّدش است؟ خیر. حضرت علیه السلام نمی‌خواهند این را بفرمایند.

و لذا بحث شد که چطور است که خدای متعال، فوق لایتناهی است؟ نمی‌شود بگویند: خدا غیر متناهی است. خیر؛ غیر متناهی، مخلوق خداوند است. ذات او فوق این‌ها است. در روایات، یک اصطلاح کلاسیک هست که مفصل به عبارات مختلفی آمده است. یک عبارت کلاسیک هم هست که جدیدا و قدیما در کتاب‌ها، خیلی به کار رفته است. می‌گویند فوق ما لایتناهی. گاهی می‌گویند فوق ما لا یتناهی است. گاهی می‌گویند فوق ما لایتناهی بما لا یتناهی شدّتا مدّتا عدتاً. این عبارت با این تفصیل می‌آید. از حیث عبارت می‌تواند «بما» متعلق به «لایتناهی» باشد. یعنی او فوق لایتناهی بما لایتناهی است. این را در پرانتز بگذارید: خداوند فوق «لایتناهی بما لایتناهی» است. «لایتناهی بما لایتناهی» به چه معنا است؟ یعنی یک چیز غیر متناهی، غیر متناهیِ غیر متناهی. بی‌نهایت به توان بی‌نهایت. بی‌نهایت را بی‌نهایت بار در خودش ضرب کنید، او تازه فوق این است.

اما در عبارت کلاسیک، این «باء» برای «لایتناهی» نیست. برای «فوق» است. «فوق ما لایتناهی» است. چه اندازه فوق است؟ «بما لایتناهی». به‌صورت غیر متناهی، فوقیت را بر می‌داریم. ظاهر عبارات کلاسیک این است که «باء» متعلق به فوقیت است. لایتناهی فوق ما لایتناهی است. خب، آن وقت معنای آن چیست؟؛ هر چیزی را که در نظر بگیرید، محدود و غیر محدود دارد. علم، قدرت و حیات، صفت کمال هستند یا نیستند؟ شما محدودشان را دارید؛ علم محدود و همچنین علم لایتناهی. این یک صفتی می‌شود اما لایتناهی؛ علم مطلق است. خداوند متعال فوق این است. به چه اندازه؟ بما لایتناهی، فوق این است. یعنی علم یک صفت کمالی است که مطلق لایتناهی شد. حیات هم داریم که صفت کمال است. قدرت هم داریم که صفت کمال است. بی‌نهایت صفات کمال داریم که هر صفتی می‌تواند خودش بی‌نهایت شود. پس «بما» متعلق به فوق است. هر بی نهایتی را در نظر بگیرید او فوقش هست بما لایتناهی. یعنی فوقیت از همه­ی جهات صفات کمالی که در این کمال نیست. آن‌ها هم برای خودشان کمالات هستند و او بی‌نهایت فوق این‌ها است.

تناقض­انگاری بین لایتناهی بودن خداوند و قید زدن او به لایتناهی

علی أیّ حال، این‌که بگوییم خداوند متعال غیر متناهی است، تعبیر ناقصی است. آن روز هم عرض کردم که در آخرین مقاله­ی اصول فلسفه، به این اشاره می‌کنند. می‌گویند این‌که می‌گوییم خدای متعال غیر متناهی است، دقیق نیست. بالاتر است. به بیان دیگر؛ شاید عبارت این بود؛ همه­ی این‌ها متخذ از روایات است. هر چه بحث‌ها جلو می‌رود، زوایای روایات خودش را نشان می‌دهد. شاید تعبیر اصول فلسفه این بود. من از حافظه­ی بیست سال پیش یا بیشتر نقل می­کنم؛ تعبیر این بود: این‌که ما می‌گوییم ذات خداوند غیر متناهی است، حرف نهایی نیست. چرا؟؛ به‌خاطر این‌که همین که می‌گوییم غیر متناهی است، خود غیر متناهی بودن، یک جور حدّ است. ظاهراً این را گفته بودند. غیر متناهی بودن، یک جور حدّ است، یعنی چه؟؛ خُب، داریم می‌گوییم حدّ نیست، شما می‌گویید حدّ هست؟! «اللّه ‌اکبر من کل شیء»، فرمودند «حدّدته». اما من دارم می‌گویم بزرگ‌تر از هر چیزی است. از کجا من او را محدود کردم؟! در این­جا بیان مختصری را عرض می‌کنم.

تفاوت بحث لایتناهی با بحث اطلاق مقسمی و قسمی

شاگرد: به تعبیر کلاسیک، اختلافی که بین دو حکیم بود، چنین بود: خداوند لا بشرط است و یا بشرط لا، با این بیان، می‌خواهید بفرمایید همان لا بشرط است؟ حدّه أن لا حدّ له، تعبیر تسامحی و غیر دقیقی است. عده‌ای قائل هستند که این تعبیر دقیقی است اما عده‌ای می‌گویند لا حدّ مطلق است. یعنی قسیم موجودات دیگر نیست. آیا منظور شما همین اختلاف است؟

استاد: آن بحثی است که وقتی ما می‌گوییم وجودی یا کمالی مطلق است، منظور ما از این مطلق، لا بشرط قسمی است؟ یا لا بشرط مقسمی است؟ این یک جور فضای بحث است. در تشکیک مراتب، مرتبه­ی عالیه بشرط لا می‌شود، کل مراتب جامع همه­ی این‌ها می‌شود و لا بشرط می‌شود. ولی لا بشرط مقسمی، جور دیگری است. چون قید لا بشرط قسمی، اطلاق است اما قید لا بشرط مقسمی، اطلاق نیست. این بحثی بود که شاید بیان شما ناظر به همین بود. آن یک بحثی است. یک وقتی هم عرض کردم فضای بحثی لوازمی دارد که خیلی هم لطیف است. این‌که می‌گوییم خدای متعال مطلق است، یعنی اطلاق قید او است یا نه، مطلق است حتی از قید اطلاق؟

شاگرد: این‌که فرمودید، همین دومی است؟

استاد: خیر؛ مقصود بنده این نبود.

نقطه­ی انطلاق و بستر مالایتناهی افراد است، نه طبایع و نه خداوند متعال!

ببینید در این­جا بحث‌هایی داریم که ساده‌تر هست، ولی به خیالم انفع است. یعنی بحث‌هایی که شاید از این‌طور بحث کردن ساده‌تر است، اما نفع آن در فضای ذهنی بالاتر است. اساساً حرفی می‌گویند که حرف خوبی هم هست؛ می‌گویند: چیزی که غیر متناهی شد، حدّ را که برداشتیم، دو تا نمی‌شود. همیشه دو تا شدن و دو تا بودن، متفرع بر حدّ داشتن است. تا شما حدّ نیاورید، نمی‌توانید بگویید: دو تا. آنچه که حدّ ندارد، دیگر دو ندارد. دائم بر هم منطبق می‌شوند. عاد الی نفسه. این‌ها زیاد تکرار می‌شد. در این­جا مثال‌هایی هم زده شده است. شما یک خط ده سانتی را در نظر بگیرید؛ جلوی شما این پاره خط ده سانتی از یک نقطه عبور کرد. این پاره خط ده سانتی را، از دو طرفش تا بی‌نهایت ببرید. در این موطن، چند خط دیگر مثل خودش را می‌توانید فرض بگیرید؟ هیچی. در این­جا هر چه بخواهید خط دیگری فرض بگیرید، چون آن را بی‌نهایت کردید، چیزی جا نگذاشته است، همه جا رفته است، پس خطی که بی‌نهایت شد، دو تا ندارد. چرا؟ چون هیچی از حدّ جا نگذاشته است تا بگوییم دو تا.

همین‌جا وقتی حدّ را شروع می‌کنید، شروع کردنی که یک حدّ را در نظر می‌گیرید، گفتم ده سانت، جلو رفتم و گفتم حالا این ده سانت را بردار. برو تا بی‌نهایت. بیست سانت و هزار سانت و همین‌طور جلو برو تا جایی نباشد. از یک حیثی شروع کردم و آن حدّ حیثی را برداشتم. چیزی که الآن می‌خواهم عرض کنم این است: اساساً لاحدی و لایتناهی نقطه­ی انطلاق است. در تفکرات­مان وقتی می‌گوییم نامحدود، از یک جایی شروع می‌کنیم و بعد می‌گوییم حالا این حدّ را بردار. نقطه­ی انطلاق از حدّ، با یک حدّی جوش خورده است که نمی‌توانید آن حدّ را بردارید. از حیث دیگری آن حدّ را برمی‌دارید. حدّ جوش خورده با نقطه­ی انطلاق شما، باز جوش خورده است. نمی‌توانیم آن را برداریم. لذا است که هر چه تلاش کنید، تا حدود را بردارید و بگویید بی‌نهایت به توان بی‌نهایت، باز از معرفت خدای متعال به‌معنای مطلق هویت غیبیه­ی الهی، خیلی دور است. خیلی فرق دارد.

شاگرد: این خاصیت ذهن است. یعنی ذهن نمی‌تواند آن حدّ را به‌معنای واقعی­اش تصور کند.

استاد: خیر؛ الآن نمی‌خواهم از عجز و ضعف ذهن شروع کنم. می‌خواهم روال منطقی لاحدّی را بگویم. وقتی می‌گویید: حدّ نیست، شما باید چیزی را فرض بگیرید تا سر آن «لا» در بیاید. «لا» مدخول می‌خواهد. مدخول آن چیست؟ می‌گویید: این‌که حدّ نداشته باشد. خُب، من به این خط مثال زدم. می‌گویید: این خط یک حدّی دارد، حالا حدّ آن را بردار و تا بی‌نهایت برو. نقطه­ی انطلاق شما چیست؟ این خطی است که الآن آن را مفروض گرفتید. خط ده سانتی را مفروض گرفتید و تا بی‌نهایت رفتید. بعداً می‌گویید: وقتی بی‌نهایت شد، دیگر برای این خط، دو تا معنا ندارد. همه­ی طولی که برای آن ممکن بود را پُر کرده است. هیچ طولی را جا نگذاشته است تا بگوییم یک خط دیگر.

خُب، همین‌جا نگاه کنید، می‌گوییم درست است که این خط هیچ طولی را جا نگذاشت، اما از نظر عرض، یک سانت آن طرف­تر بروید. یک متر آن طرف تر بروید و یک خط دیگری رسم کنید. درست است که آن خط بی‌نهایت، هیچ طولی را جا نگذاشته است تا در آن جا بگوییم دو خط داریم، اما خُب، عرض هم داریم. شما حدّ را برداشتید، در کجا؟ در محدوده­ی طول همان خط قبلی. خط دوم که ده سانت آن طرف­تر فرضش می‌کنید، فرض جدیدی از خط است. برای خودش شروع و پایان دارد. پس شما افراد بی­نهایتی از خط دارید که هر کدامش می‌تواند بی‌نهایت باشد. خیلی خوب شد! بی‌نهایت فرد از خط که هر کدام می‌تواند محدود و یا نامحدود باشد. اگر به این دقت کنید، می‌بینید الآن یک فضای جدید برای ذهن ما باز شد. وقتی می‌گوییم غیر متناهی، مقصودمان غیر متناهی فرد است؟

حالا اگر بگویید خط غیر متناهی. نه فرد. آن را چطور تصور می‌کنید؟ خطی که فردی از خط باشد، از نقطه‌ای عبور می‌کند، خیر. خط غیر متناهی باشد. ما این را داریم یا خیر؟

شاگرد: قابل تصور است.

استاد: چطور؟

شاگرد: دیگر دومی­بردار نیست، می‌شود دایره­ی غیر متناهی. یا چیز دیگری باید در کنارش باشد.

استاد: بله؛ مقصود شما از خط یعنی طبیعی الخط. خط، مقابل سطح مراد است، نه خط به‌معنای یک فرد خط. به این اطلاق طبیعی می‌گوییم. صرف الشیء می‌گوییم. آیا الخط‌ (الخط در مقابل سطح)، طبیعی خط، متناهی است یا غیر متناهی است؟ کدام یک از این‌ها است؟ هیچ‌کدام. چرا؟؛ چون اساساً تناهی و عدم تناهی‌ای که در ذهن به‌دنبال آن هستیم، برای فرد است. وقتی به طبیعی می‌رسیم، طبیعی اطلاق دارد، طبیعی حدّ ندارد. الخط، قطعاً حدّ ندارد. اما حدّ نداشتنش، به این معنا نیست که مدام جلو رفتیم و حدش را برداشتیم. بلکه صرف الشیء است. صرف الشیء لایتثنی و لایتکرر. خط، مقابل سطح؛ دو تا خط داریم؟ خیر. چون خط که طبیعی است و طبیعی که دو تا ندارد. طبیعی لایتثنی و لایتکرر. خط، خط است. آن چه که یتثنی است، چیست؟ فرد خط است. فرد خط یتثنی؛ دو تا خط.

پس وقتی از افراد غیر متناهی خط، سیر کردیم و به طبیعی الخط رفتیم، با اطلاق جدیدی روبرو می‌شویم که حدّ ندارد، اما حدّ نداشتنش، به‌معنای غیر متناهی نیست. این خیلی ظریف است. لذا همیشه عرض می‌کردم، اولی که ذهن ما با طبایع و احکام آن آشنا می‌شود، دارد از احکام فرد فاصله می‌گیرد. گویا اولین کلاس حکمت است. اولین کلاس حکمت این است که انسان با احکام طبایع آشنا شود. دارد یک لاحدّی‌ای را می‌بیند که غیر متناهی نیست. طبیعی الخط حدّ ندارد، اما معنای این حدّ نداشتن، این نیست که غیر متناهی باشد. بعداً هم در مورد خدای متعال می‌گوییم که حدّ ندارد، اما این حدّ نداشتن به این معنا نیست که غیر متناهی باشد. لذا دیگر خیلی اباء نمی‌کند و ناراحت نمی‌شود. یعنی این‌که می‌گویی حدّ ندارد پس یعنی غیر متناهی است!

چقدر این مثال‌ها زیبا است!؛ گفتم بحث از این مثال ساده است اما در پیشرفت انفع است. با همین مثال ساده می‌فهمیم که لاحدّی، ملازمه­ای با غیر متناهی بودن ندارد. لاحدیِ در بستر خاصی است که با غیر متناهی بودن ملازمه دارد. در بستر افراد است که ملازمه دارد. اما بسترهایی داریم که لاحدّی با آن‌ها جوش خورده است. اطلاق طبیعی؛ طبیعی که محدود نمی‌شود. طبیعی الخط؛ خط محدود است یا غیر محدود؟ محدود که نیست. بله، حدّ جوش­خورده با طبیعت در آن هست. یعنی طبیعی خط، با طبیعی سطح فرق دارد. یک جوش خوردگی‌ای است که لازمه­ی خود ماهیتش است.

پس در اندرون خودش یک اطلاقی دارد و یک حدی دارد جوش­خورده با خود طبیعت. بنابراین خط محدود هست یا نیست؟ محدود به محدودیت طبیعیِ خط هست. نامحدود است به این معنا که در ناحیه­ی خط بودن، دیگر حدی ندارد و درعین‌حال نه محدود به محدودیت وجود و فرد خط است و نه غیر متناهی و نامتناهی به وجود خط.

با فضای جدیدی از حدّی و لاحدّی آشنا شدیم. هم محدود است و هم نامحدود. اما نامحدود به‌معنای لاحدّ. نه به‌معنای غیر متناهی.

حالا همین خطی که مثال زدم و به طبیعی رسیدیم، به افرادش برویم. اگر بگویید افراد غیر متناهی خط، بی‌نهایت ...؛ همین سؤال ظریف را می‌خواهیم جلوتر ببریم. یک خط غیر متناهی، در همین خط دیگر دو تا فرض نداشت. ولی خط‌های دیگری فرض داشت. گفتیم پس بی‌نهایت خط می‌توانیم داشته باشیم. سؤال این است: حالا که بی‌نهایت خط داریم، می‌شود بی‌نهایت به توان بی‌نهایت؟ یا بی‌نهایت به توان دو؟ به نظر شما کدام یک از این‌ها است؟

شاگرد: با هم فرق می‌کنند؟

استاد: بله؛ بی‌نهایت بی‌نهایت خط، می‌شود بی‌نهایت به توان دو. یعنی بی‌نهایت ضرب در بی‌نهایت. سؤال ما این است: الآن برای این بی‌نهایت به توان دو و بی‌نهایت خط، دویی فرض دارد یا ندارد؟ یعنی استیعاب کردیم؛ بی‌نهایت خط بی‌نهایت را آوردیم، الآن برای این‌ها دویی فرض دارد یا ندارد؟

شاگرد: طبیعت خودشان نه، ولی برای غیر طبیعت­شان بله. یعنی از خود جنس خط نه.

شاگرد ٢: ظاهراً در خود جنس خط هم دارد. چون همین‌طور می‌توانی بی‌نهایت به توان بی‌نهایت را تصور کنیم، پس وقتی می‌توانیم تصور کنیم علی القاعده دو هم دارد.

استاد: ببینید الآن که گفتم خطی در این­جا هست و خط دیگری را یک متر آن طرف­تر فرض می‌گیرم، عمق را هم در کار آوردم؟ نه. در یک سطح بی‌نهایت نقطه در نظر گرفتم.

شاگرد: اگر حجم را در نظر بگیریم، بی‌نهایت به توان سه می‌شود.

استاد: تازه آن هم حالت موازی با خط قبلی دارد. نقطه­ها را بالا می‌بردم و می‌گفتم یک سانت بالا بروید و یک خط رسم کنید. در ذهن ما موازی با آن بود. خُب، حالا می‌شود بالاتر برویم و غیر موازی باشد. چون ما با وجود خط کار داشتیم، موازی آن‌که شرط کار ما نیست. شما می‌توانید از یک نقطه بالاتر، بی‌نهایت خط به زاویه‌های مختلف رسم کنید. در این­جا است که کم‌کم می‌بینید دوی در بی‌نهایت دارد می‌شود سه. در همان سطح به این صورت می‌شود. اما وقتی عمق را هم در کار می‌آوریم دیگر فضای جدیدی به پا می‌شود. پس عمق را هم به کار می‌آوریم. یعنی ابعاد سه­گانه را‌ آوردیم و الآن با فضای جدیدی به نام سطح و بعد حجم مواجه شدیم. الآن یک فکر جدیدی به ذهن ما می‌آید. یک چیزی داریم که سه بعدی است. هم طول، هم عرض و هم عمق دارد. در سه جهت طول و عرض و عمق بی‌نهایت. کره‌ای را فرض بگیرید که طول و عرض و عمق دارد، حالا بی‌نهایت می‌شود. الآن یک کره بی­نهایتی که طول و عرض و عمق دارد، این کره­ی بی‌نهایت دومی دارد یا ندارد؟

شاگرد: بله؛ چهار بعدی هم می‌توان تصورش کرد.

استاد: یعنی چه؟

شاگرد: قبلاً یازده بُعد را فرمودید.

استاد: چهارده بُعد را در نظریه­ی اخیر فیزیک مطرح کردیم.

شاگرد: ما تصور محسوسی بیش از سه بعد نداریم، اما استحاله که نداریم.

استاد: خیر؛ ما نمی‌خواهیم مشی‌ علی العمیاء داشته باشیم. این‌که گفتم ساده باشد، به این خاطر بود که ما را به چیزهایی که نمی‌فهمیم، حواله ندهید. با ساده‌ترین وجه بیان کنیم. به‌نحوی ‌که اگر این مباحثه را در کلاس دبستان هم بگوییم، همان بچه‌های دبستان هم می‌فهمند که می‌خواهیم چه بگوییم. الآن به بچه‌های دبستان می‌گوییم که ما یک کره داریم که تا بی‌نهایت رفته است. چند کره­ی دیگر مثل آن می‌توانیم فرض بگیریم؟! می‌گوییم دیروز کره‌ای بود بی‌نهایت، ولی دیروز بود و تمام شد رفت. حالا امروز یکی دیگر است. پس باز دو تا شد. یعنی ما که کره را بی‌نهایت کردیم، توجهی به بعد چهارم زمان نداشتیم. فقط سه بعد را بی‌نهایت کردیم. وقتی هم که در سه بعد بی‌نهایت شد، ذهن قانع می‌شود. می‌گوید این دیگر دوم ندارد. توجه ندارد که من نقطه انطلاق در برداشتن حدّ دارم. نقطه­ی انطلاق من در برداشتن حدّ، سه بُعد بود. از حیث سه بُعد، حدّ را برداشتم. اما از حیث زمان که آن هم خودش یک بُعد است، حدّ را که برنداشتم. نگفتم یک کره‌ای که بی‌نهایت است و از دیروز و فردا هم بی‌نهایت است. الآن با یک کره‌ای به این صورت مواجه هستیم.

حالا بُعد چهارم آن را هم فرض می‌گیریم. در دبستان هم مانعی ندارد به بچه بگوییم. می‌گوییم کره‌ای را فرض بگیر که بی‌نهایت است. طول و عرض و عمق آن بی‌نهایت است. از حیث زمان گذشته و آینده هم بی‌نهایت است. همیشه­ی همیشه بوده است و همیشه­ی همیشه هم خواهد بود. این کره چند فرض دارد؟

شاگرد: باز هم از نظر جنس، می‌تواند متعدد باشد. یعنی جنسی داشته باشند که با هم تداخل داشته باشند. مثلاً یکی از آن‌ها از نور است و یکی از آن‌ها از شیشه است.

استاد: بله. درست است. یعنی وقتی نقطه­ی انطلاق را در نظر گرفتید ...؛ من این کره را از نقطه­ی انطلاق چند جهتی بی‌نهایت کردم؟ چهار جهت. گفتم کره‌ای که طول و عرض و عمق و زمان داشته باشد. خُب، شما چهار طبیعت را به کار آوردید. طبیعی الطول، طبیعی العرض، طبیعی العمق و طبیعی الزمان. بعد از حیث این چهار طبیعی، حدّ فرد را برداشتید. حدّی را که برداشتید از فرد طبیعی برداشتید یا از خودش؟ از کدام یک از آن‌ها؟ از فردش. از این حیث، از حیث فرد برداشتید. انطلاق لاحدّی خیلی مهم است. یعنی اساساً وقتی می‌گوییم حدّ نیست، نقطه­ی انطلاقی دارد که یک حدّی با آن جوش خورده است. آن را نمی‌توانید بردارید

و لذا وقتی می‌گویید: فوق مالایتناهی است، یعنی هر چه لایتناهی دارید، از یک جایی شروع می‌شود، ولی یک محدودیتی با آن جوش خورده است. خدای متعال فوق همه­ی نقاط انطلاق است. شما دارید از پایین به بالا می‌روید. از پایین می‌خواهید حدّ را بردارید. خدای متعال محیط بر همه­ی طبایع و جواهر و … است.

طریق معرفت خداوند، عجز از معرفت او است!

شاگرد: برای همین است که تصور آن محال است؟

استاد: بله؛ ولی وقتی به این صورت جلو می‌رویم، ذهن لذتی را درک می‌کند در این‌که می‌فهمد که چطور در مورد خداوند متعال نمی‌توان گفت که غیرِمتناهی است. خدای متعال که فرد یک طبیعی نیست که غیر متناهی­اش کنیم. غیرِمتناهی یک نقطه­ی انطلاق دارد. نقطه­ی انطلاق یک طبیعی، قوام کارش است. طبیعی که نمی‌تواند در ذات خدای متعال بیاید. او سابق بر همه­ی طبایع است. وقتی بر همه­ی طبایع سابق است، نمی‌توان گفت غیرِمتناهی است. چون غیر متناهی به فرد یک طبیعت و بستر فرد مربوط می‌شود. یعنی اگر به این صورت جلو برود، به ‌وضوح درک می‌کند که چرا نمی‌شود.

شاگرد: اگر به این درک برسد که نمی‌تواند درک کند، خودش خیلی است.

استاد: بله؛ در دعای عارفانِ مناجات خمسة عشر هست: «وَ لَمْ تَجْعَلْ لِلْخَلْقِ طَرِیقاً اِلَی مَعْرِفَتِک، اِلّا بِالْعَجْزِ عَنْ مَعْرِفَتِک». ظاهرش خیلی ساده است، اما خیلی پر محتوا است.

منظور این‌که ریخت این لایتناهی بودن به این صورت است. وقتی ذهن شما دارد غیرِمتناهی درست می‌کند، در بستر فرد است. قوام این بستر هم به یک طبیعت است و لذا حتی این کره­ی لایتناهی زمانی هم که درست کردیم، تازه چهار جهت شد. به فرمایش آقا [یکی از حاضران] وقتی ذهن قوی شد، می‌تواند حیثیات دیگر را هم دخالت بدهد.

شاگرد: بو، رنگ، طعم و عوالم مختلف … .

استاد: بله و لذا است که علم، حیات، قدرت و ... کمالات مختلفی هستند که از حیث طبیعی کمالی­شان متباین هستند. قدرت که عین علم نیست، یک چیز روشنی است.

«کمال الاخلاص نفی الصفات عنه» و جواز توصیفاتِ در مسیر توحید قبل از رسیدن به کمال

با این توضیحی که عرض کردم، می‌توانیم «باء» را به «ما لا یتناهی» بزنیم. ما لا یتناهی بما لا یتناهی. نه یعنی بی‌نهایت به توان دو. یعنی ما لا یتناهی به توان بی‌نهایت. البته این‌که دوباره می‌توان آن را توسعه داد، بر عهده­ی ذهن شریف خودتان باشد. الآن او فوقش است. چون بستر بی‌نهایت به توان بی‌نهایت، بستر افراد الطبایع است. شما چاره‌ای ندارید که وقتی می‌خواهید حدّ را بردارید، در محدوده­ی فرد طبیعت این کار را انجام بدهید و حال آن‌که او فارق بین طبیعت و فرد است. هو الذی فرّق بین الطبایع و الافراد. نه فرد است و نه طبیعت. فوق انطباق و مفهوم و عنوان و معنون و طبیعی و فرد است. سابق بر همه­ی حقایق نفس­الامریه است که همه­ی این‌ها گوشه­هایی از آن است.

شاگرد: این‌که می­گویند: خداوند فردی از واجب الوجود است، درست است؟ یعنی گویا یک طبیعتی را در نظر می‌گیرند که در بستر سطح پایین شاید درست باشد و در بستر بالاتر حرف دقیقی نیست.

استاد: بله؛ یعنی دقیقاً همان چیزی است که حضرت علیه السلام از آن به کمال تعبیر کردند. کمال الاخلاص له، نفی الصفات عنه. یعنی قبل از کمال، نفی الصفات نیست. موحد و عارف دارد جلو می‌رود. به عبارت دیگر نمی‌تواند از مسیر توصیف نرود و به معرفت نرسد. وقتی به کمال می‌رسد، آن وقت می‌شود نفی کرد. روایتی هست که حضرت علیه السلام آن را برای امثال ما فرموده­اند. مقام انبیاء علیهم السلام أجل از این‌ها است. ولی فی حد نفسه، ظریف و جالب است. ذیل آیه­ی شریفه­ی « وَكَذَٰلِكَ نُرِيٓ إِبْرَاهِيمَ مَلَكُوتَ السَّمَاوَاتِ وَالْأَرْضِ وَلِيَكُونَ مِنَ الْمُوقِنِينَ، فَلَمَّا جَنَّ عَلَيْهِ اللَّيْلُ رَأَىٰ كَوْكَبًا قَالَ هَٰذَا رَبِّي فَلَمَّآ أَفَلَ قَالَ لَآ أُحِبُّ الْآفِلِينَ»2. خُب، یکی می‌گوید برای مماشات بود، برای مجادله بود. روایات مختلفی هم هست. یک روایت هست؛ در تفسیر برهان ببینید. حضرت علیه السلام فرمودند:

«وَ سُئِلَ أَبُوعَبْدِ اللَّهِ (عَلَيْهِ السَّلاَمُ) عَنْ قَوْلِ إِبْرَاهِيمَ (عَلَيْهِ السَّلاَمُ): هٰذٰا رَبِّي ،أَشْرَكَ فِي قَوْلِهِ: هٰذٰا رَبِّي ؟ فَقَالَ:«لاَ، بَلْ مَنْ قَالَ هَذَا الْيَوْمَ فَهُوَ مُشْرِكٌ، وَ لَمْ يَكُنْ مِنْ إِبْرَاهِيمَ (عَلَيْهِ السَّلاَمُ) شِرْكٌ،وَ إِنَّمَا كَانَ فِي طَلَبِ رَبِّهِ، وَ هُوَ مِنْ غَيْرِهِ شِرْكٌ»3.

«… وَ إِنَّمَا كَانَ فِي طَلَبِ رَبِّهِ»؛ حضرت ابراهیم علیه السلام می‌خواستند از «أفل»، «أفل» به «قال إنّی بریء» برسند. چون در طریق هستند، شرک نیست. این خیلی عالی است. آن اشاره‌ای که این روایت شریفه دارد، می‌گوید: «کمال الاخلاص له نفی الصفات». یعنی موحدی که به کمال نرسیده است، به کمال نرسیده ولی قبل از رسیدن به کمال در طریق توحید و معرفت نیست؟! هست. بگوییم کمال که نفی الصفات است، او که قبلش گرفتار توصیف است! توصیفی است در مسیر توحید. یعنی راهی غیر از این ندارد. یعنی موحد باید از این مسیر برود و وقتی به کمال رسید ... .

الآن شما که گفتید فردی از آن است، یادم آمد. می‌گوییم: ذات واجب الوجود، فردی از واجب الوجود است! می‌گوییم فردی است اما وقتی بحث جلو رفت، می‌بینیم خاک بر فرق من و تمثیل من! فرد کجا؟! طبیعت کجا؟! انطباق و مفهوم کجا؟! مطلب خیلی بالاتر از این حرف‌ها است.

شاگرد ٢: این بحثی که می‌گویند، قمر به ‌معنای این قمر نیست بلکه به ‌معنای مراتب توحید است ... .

استاد: می‌گویند مراحلی از ظهور معرفت ربّ یا معرفت نفس است. این را می‌گویند. شاهدش هم این است ...؛ البته من نمی‌خواهم به‌ عنوان قرینه ذکر کنم، فقط به‌عنوان بحث طلبگی بیان می‌کنم. شاهدش آیه­ی قبلی از آن است. «فاء» تفریع در آیه، بسیار مهم است. کلام خدای متعال است؛ قرآن شوخی نیست: «وَكَذَٰلِكَ نُرِيٓ إِبْرَاهِيمَ مَلَكُوتَ السَّمَاوَاتِ وَالْأَرْضِ وَلِيَكُونَ مِنَ الْمُوقِنِينَ»، «کذلک» به چه صورت است؟ من به‌ عنوان شاهد به این صورت عرض می‌کنم: «فاء» دارد «کذلک» را توضیح می‌دهد. «کذلک نری ابراهیم»، خُب، به چه صورت؟ «فَلَمَّا جَنَّ عَلَيْهِ اللَّيْلُ رَأَىٰ كَوْكَبًا قَالَ هَٰذَا رَبِّي فَلَمَّآ أَفَلَ قَالَ لَآ أُحِبُّ الْآفِلِينَ». خُب، خیلی وقت‌ها هست که در ابتدای شب، آدم ماه را می‌بیند. یا اولی که مواجه می‌شود با خورشید مواجه می‌شود. خیر، در این­جا راهی غیر از این ندارد؛ «ف»؛ در ارائه­ی ملکوت اول، باید کوکب دیده شود. راهی غیر از این ندارد؛ «رای کوکبا». بعد افول کند. بعد که افول کرد، این دفعه نوبت به طلوع قمر برسد. خُب، خیلی وقت‌ها هست که قمر طلوع می‌کند اما هنوز ستاره‌ها غروب نکرده است! این برای این­جا نیست. در این­جا حتماً باید ستاره افول بکند، بعد از افولش، تازه قمر طلوع بکند. خُب، خیلی وقت‌ها هنوز ماه در آسمان است و شمس طلوع می‌کند! خیر؛ در این­جا حتماً باید ماه افول بکند و بعد شمس، طلوع بکند. این‌ها را توضیحاتی داده‌اند.

قطع عارف به وصول نهایی، شروع کار او!

شاگرد ١: چند سال پیش خدمت شما رسیدیم و سؤالی مطرح شد. شما این روایت را مطرح کردید و فرمودید کسی که در طریق است، مرحله­ی بالاترش را می‌بیند و فکر می‌کند ... .

استاد: خیال می‌کند هیچ چیزی نیست. نمی‌دانم. من عبارتی را یادم هست. از کتاب مرحوم آشیخ محمد بهاری. کتاب خیلی خوبی دارند به نام تذکرة المتقین. جلوترها چاپ جیبی داشت. الآن چندین چاپ و ترجمه شده است. کسانی که ندیده­اید این کتاب را یک دور مطالعه کنید. آشیخ محمد بهاری از علمای معروف هستند. هم بحث و هم شاگردی مرحوم آمیرزا جواد ملکی تبریزی بوده­اند. این‌ها با هم، هم­شاگردی بوده­اند. خدا رحمت­شان کند. تذکرة المتقین ایشان کتاب خوبی است. حاج میرزا جواد آقا چند کتاب دارند. آشیخ محمد هم چند کتاب دارند که این یکی از آن‌ها است. شاید این چیزی که شما گفتید را، من از تذکرة المتقین گفته­ام. در حافظه­ی من از فرمایشات بزرگان بوده است. ایشان یک جمله‌ای دارند که جمله­ی خیلی مهمی است. اهمیت جمله را دقت کنید!

می‌گویند یک عارف به درجه‌ای که رسیده، محال است از آن درجه بالاتر برود مگر این‌که قاطع بشود بالاتر از این درجه‌ای که من رسیده‌ام، درجه‌ای نیست. این خیلی است. یعنی قاطع می‌شود «لیس وراء أبادان قریة». یک دفعه رفع طبق می‌شود: «لَتَرْكَبُنَّ طَبَقًا عَنْ طَبَقٍ»4. می‌بیند چه خبر بود! من رسیده بودم و گفته بودم بالاتر از این نیست! حالا می‌بینم، دستگاه چه خبر است! آقای بهاری خیلی جمله­ی بزرگی گفته بودند. محال است یعنی چه؟ یعنی تا مادامی که می‌گویی هنوز مانده است، هنوز به «لیس وراء أبادان» نرسیده ای! تازه وقتی می‌رسی و می‌گویی: «لیس وراء ابادان»، تازه وقتی است که بپری!

شاگرد: کسانی که به کوه می‌روند، همین‌طور می‌گویند. وقتی اول کوه می‌رسی، می‌گویی تمام می‌شود. وقتی می‌روی، می‌بینی هنوز مانده است. همین‌طور ... .

استاد: بله؛ قله­ای پشت قله‌ها.

قضیه­ی اطلاق، حرف دیگری بود. علی أیّ حال، خلاصه­ی عرض بنده در «تحدید» این شد: حضرت علیه السلام که فرمودند: «محرم تحدیده»، مقصود حضرت علیه السلام این نیست که هویت غیبیه و ذات اقدس الهی در آن بستر تحدید هست، اما عقل نمی‌تواند حدی برای او بیاورد. اصلاً او از این بستر مبراء است. او أجل از شانیت بستر تحدید است و بالاتر از آن است. در عبارات بعدی شواهدی برای همین مطلب می‌آید.

و الحمدللّه ربّ العالمین و صلّی اللّه علی محمد و آله الطیبین الطاهرین.

 

 

 
















****************
ارسال شده توسط:
حسن خ
Wednesday - 12/2/2025 - 13:19

جلسه هشتم حکمت و عرفان شیعی

آقای دهشور: (خدمت شما که رسیدیم) شما چند تا فرمایش اصلی برای عرفان شیعی داشتید، یکی ضعف مبانی علوم مقدماتی فلسفه و عرفان بود که اگر اینها تقویت بشود، حالا هم زبان و هم استدلالات تقویت بشود، یک بحث دیگر ضعف فلسفه بود که اگر آن هم باز تقویت بشود عرفان شیعی بیان بهتری پیدا می کند، الآن (ما) بیان علمی نداریم، اگر بخواهیم صرفاً إقناع باشد (بله ممکن است) فرد [ می تواند] بیاید مطالب را بخواند و اقناع شود امّا بیان علمی و برهانی که اگر همه بخوانند إقناع بشوند این فعلاً در عرفان نیست بلکه باید فلسفه تقویت بشود، زبان (باید) تقویت بشود و یک مطلب مهمی که شما فرمودید این بود که هر جا گیر کردیم ذهنمان را از فلسفه و عرفان خالی بکنیم و بعد ببینیم واقعاً روایات چه می گویند، ما روایات را بفهمیم أخذ بکنیم بعد بتوانیم برای آنها مبنا سازی فلسفی یا بیان عرفانی (پیدا بکنیم) [ داشته باشیم]. در این مصاحبه هایی که خدمت شما رسیدیم حداقلّ در این نکته اش که ما از آیات و روایت یک چیزی را بفهمیم آقایان عرفاء که خودشان خیلی تأکید دارند که ما اینها را از آیات و روایات می فهمیم، به ذهن ما رسید که اگر شما یکی دو تا مثال به عنوان شاهد نیاورید که این مثال ها مثلاً بیان، ضعف فلسفی دارد یا ضعف های دیگری دارد و آیات و روایات است که می تواند بیاید و کمک بهتری بکند و بیان بهتر به ما بدهد، فهم دقیق و فلسفه دقیق تر به ما بدهد، این کل مبانی شما شاید درست فهم نشود لذا عرض ما این است که دو تا از مبانیّ که شما دارید که از روایات هم شواهد خوبی هم بشود برای آن آورد شما این دو تا مبنا را به عنوان مثال که روش شما، حرف های شما را در ضمن مثال هم تبیین بکند بفرمایید که ما مطالب شما را بهتر و عمیق تر متوجّه بشویم.
بنده عرض کردم به ذهنم رسید که اگر بحث نفس الأمر را شما صلاح می دانید و اینکه اگر اشتباه نکنم شما عقل و نفس الأمر را یک لوح می دانید حالا این روایات که شاهد بر این مطلب است و ادلّه ای که شما را به اینجا رسانده که روایات این را می گوید و ما اگر این حرف را بزنیم متقن تر است، و نیز آن تقریر خاصّتان از وحدتِ وجود را بفرمایید شاید بهتر باشد، اگر مبانی دیگری را صلاح می دانید آنها را بفرمایید.
استاد: بسم الله الرحمن الرحیم، کلماتی که شما گفتید: مبانی من بوده. من عرض کردم که (باعث خنده است که مثل من را بگویید صاحب مبنا) [ من صاحب نظر نیستم]، من جلوتر هم عرض کردم (خداییش) مجوّز اینکه من بی ادبی و جسارت بکنم و حرفی بزنم فقط اندازه این است که یک طلبه ای که مشغول بوده و درس خوانده ممکن است در فهم بعضی از مسائل بلندِ علمی دچار سؤال بشود، سؤالی که خود او معلوم نیست (بفهمد) این سؤال تا چه اندازه وزنش است، گاهی سؤال در اثر مشکل در فهم او بوده و گاهی که (مطلب) [ سوال] عمیق است سؤال (مفتاحی) [ مصداقی] است برای مباحث و میادین بعدی، این را هم من همین اندازه به خودم اجازه می دهم که بحث مطرح بشود و وقتی مطرح شد اساتید فن می توانند بفهمند که این سؤال از مشکل در فهم بوده باز خوب است، یکی از بهترین چیزهایی که الآن در آموزش و پروش موجب پیشرفت می شود این است که معلم ها ببینند (یک بحث علمی را) [ در مباحث علمی ] که می گویند ذهن بچه کجا گیر می کند، برای دوره های بعدی آنجایی که ذهن دیگران در فهم مطلب گیر می کند این را صاف تر می کنند تا دیگران راحت تر بفهمند، سؤالات ذهن من اگر در اثر کج فهمی هم بوده اساتید فن می فهمند که راه و بیان را (بهتر) [ اصلاح] بکنند، گاهی هست که اساتید فن می فرمایند که این سؤال، مطلب عمیق است که جا برای کار دارد که بحث را بیشتر جلو ببریم، علی ایّ حال این که بنده جسارت می کنم برای همین است و إلّا مبنایی ندارم، خودم هم عرض کردم (باعث خجالت است از اصل درس خواند ما که) عمر تلف کردیم.
(امّا چیزهایی که در ذهنم بوده)[ الان آن چه] که به عنوان طلبه ای که مشغول بودم چند تا چیز بوده که قبلاً مطرح کردم عرض می کنم با آن دو مطلب که اساسی تر هم هست، الان مهم ترین بحث عرفان نظری وحدت شخصیه وجود است و مسئله نفس الأمر، این دو تا مباحث خیلی خوبی است.
یک مطلبی که من سالهاست می گویم و نمی دانم که به این صورت واضح در کتاب های کلاسیک و غیر کلاسیک آمده است یا نه، ولی به ذهنم می رسد مطلب واضح و نافعی است و آن اینست که اصل این که (در ذهنم آمد و) ما [ مطالبی] را در مباحثات هم می گفتیم سرِ وضوح مفاهیم بود، می گویند: تصورات بدیهی و تصورات نظری و مخصوصاً [ مفهوم ] راجع به مفهوم وجود و عدم که در کتاب های بدایة و نهایة می خواهند تعریف ارائه بدهند می گویند در تعریف وجود، به ذهن من این جوری می رسد که رمز وضوح مفهوم و اختفای مفهوم چیست؟ چرا در ذهن ما یک مفهوم واضح است و هر چقدر تعریف می کنیم (می بینیم) چیزی اضافه نشد ولی در مقابل بعضی از مفاهیم نیاز به تعریف دارد (و ابهام دارد)، این رمز را من این جوری به ذهنم آمده بود: چون اساس إدراک و ظهور مفاهیم در ذهن به مقابله است، اگر ما مقابله را برداریم اصلاً علم حصولی نداریم، منطق نداریم، قضیه و تصور نداریم. آلات عقل، مفاهیم (هستند) [ عقل است] و ظهور مفاهیم به مقابلات است، علم حضوری دستگاه دیگری دارد، علم حضوری در میدان غیر متقابلات هم معنا دارد (جای خودش) امّا در فضای منطق و علم حصولی و حرف زدن، مفاهمه و تفکر همه اینها فضاهایی است که تا مقابله نداشته باشیم هیچ مفهومی ظهور (نمی کند) [ ندارد،] به مقابله ظهور پیدا می کند.
گام دوم اینست که اگر یک مفهومی هست که از یک تقابل برخاست این مفهوم واضح است، هر مفهومی که یک مقابل دارد این مفهوم واضحِ واضح است، چرا؟ چون اگر این مقابله را ذهن ما فهمیده [ باشد] (طرفین) [ طرف] مقابله برایش واضح است، هر چقدر هم بخواهید دَورش بدهید یک تقابل هست و تمام که درک کرده است (او را)، دیگر می خواهید چکارش بکنید؟ امّا اگر یک مفهومی در دلش مقابلات باشد مثل یک منشوری باشد که هر وجهی از آن منشور مقابلی دارد برای خودش غیر از وجه دیگر، اگر مفهوم این جوری باشد در این صورت مفهوم، مبهم است یعنی ذهن به وجهی که یکی از مقابل هایش را فهمیده درک می کند، در دل این مفهوم آن مقابلی را که درک کرده از همان حیث آن مفهوم برایش واضح است امّا این مفهوم وجوه دیگری هم دارد یعنی مقابل های دیگری هم دارد که هنوز آن مقابل ها برای ذهن ظهور نکرده است لذا مفهوم مبهم می شود، یعنی مبیَّن مِن وجه و مبهم مِن وجه، این خیلی وقت هست که در ذهنم هست، علی ایّ حال پس (اگر) این را بپذیریم که ظهور دستگاه منطق و مفاهیم به مقابلات است حالا آیا علم حضوری مبنای علم حصولی است و ظهور منطق، اوّل از طریق قضیه است بعد تصور یا اوّل تصور (است) بعد تصدیق، یا ترکیبی از همه اینهاست (بحث خوب و قشنگی است و ربطی به بحث ما ندارد) [ بحث هایی هست]
[این] (یعنی) یکی از احتمالات خیلی قوی این است که ابتدائاً علم حصولی که تشکیل می شود به صورت (یک) قضیه تشکیل می شود نه به صورت تصوّر، غلط است که بگوییم تصورات با همدیگر ترکیب می شوند تصدیق را پدید می آورند، اینها بحث های منطقی است.
حالا این را که عرض کردم می خواهم مقدمه قرار بدهم برای این مطلب، بزرگان معرفت و علم می خواستند آن معرفت خودشان را، مشهود خودشان را، عرفان خودشان را به زبان علم حصولی، به زبان منطق، به زبان محاوره، به بیان کلاسیکی که می توانند به دیگران انتقال بدهند (پیاده بکنند) [ بیاورند،] این را می دانیم که آنها آشنا شدند با یک موطن بسیار وسیعی که «لا یشذّ عن حیطته شیء»، هیچ چیزی بیرون از آن نمی توانید (فرض بگیرید) [ باشد]، (می گویند:) کمال مطلق، بی نهایت مطلق،(تعبیراتی که دارند،) الآن هم (دیدم) در کلمات می آید (بی نهایتی که در) اصطلاحات (می آید) بی نهایتی بُعدی در نظر می گیرند، می گویند اینهایی که می گویند: خدا بی نهایت است، یعنی از ابعاد ثلاثه بکشید و بروید همه اش خداست، اصلاً این جوری نیست، وقتی در اصطلاحات گفته می شود خدای متعال لا یتناهی است، غیر متناهی است منظور عدم تناهی از حیث کمالات وجودی است نه از حیث أبعاد، اصلاً این منظور نیست.

 

جلسه تفسیر 22/12/1390

تقریر آقای وافی در وبلاگ:

دوشنبه ( 12 / 3 / 2012 )
سوال درباره ی معنای رکن و استخاره برای فهمیدن آینده ( تفأل ) و جواب استاد تا دقیقه ی هشت
بسم الله الرحمن الرحیم
بعضی ها گفته اند : چون کمالات بی نهایت است . پس نمی توان گفت : معصومین بالاتر نمی توانند بروند . کأنّه یک نحو محدودیتی برای آنها قائل شدیم اگر بگوییم مقامات آنها نمی تواند بالاتر رود . گویا به جایی رسیده اند و توقف کرده اند در حالیکه کمالات نامحدود است . من عرض کردم : صحیح است که کمالات بی نهایت است و چون حدّ یقف ندارد معصومین هم می توانند در این کمالات بالا بروند . ولی در عین حال یک مقامی دارند که بالارفتن برای آن مقام معنا ندارد یعنی اگر ظهور انوار معصومین را در عوالمی که متوسَّط الیهِ مقام وساطت فیض و نورانیت است ، در نظر بگیریم ، این حرف خوب است که بگوییم : عوالم برای خودشان تا بی نهایت می توانند کمالات مفروض داشته باشند . اما خود آن مقام نورانیت فعلیّت تامه دارد . بحث رسید به اینجا که مقام نورانیت وحدت حقه ی ظلّیه دارد . کأنّه همه ی بی نهایت ها در خودش است . همه کمالات بی نهایت عوالم دیگر از او ناشی می شود . اما مبادا تصور کنیم که خدا شد ! برای همین فرموده اند : ما را خدا نگویید ولی هر چه می خواهید بگویید و لن تبلغوا . مبادا به خاطر ضعفمان به مجرّد فهمیدن تصور این مقام ، قائل به الوهیتشان شویم . حضرت رسول (ص) به امیر المؤمنین فرمودند : اگر خوف آن نداشتم که در حق تو آنچه در حق حضرت عیسی گفتند ، بگویند ، درباره ات چیزهایی می گفتم که به هیچ گروهی مرور نکنی مگر اینکه أخذوا من تراب قدمک یتبرّکون به . با وجود این همه فضائلی که برای حضرت گفته شده است . اما کسی که مشی بر محکمات کند و به اشتباه نیفتد و مواظب خودش باشد و از اهل بیت جلو نیفتد ، می فهمد که دستگاه معارف خیلی وسیع است . یکی از معارف این است که : همین بی نهایتی که می تواند برود و به جایی هم نرسد ، خود همین بی نهایت یک جایی دارد که ایستاده و ثابت است و چیزی هم نمی شود به آن اضافه کرد . مثلا مجموعه ی اعداد طبیعی از یک شروع می شود و می رود تا بی نهایت و هیج نمی رسد که تمام شود . مجموعه اعداد صحیح مثبت و منفی هم بی نهایتی دیگر است .
سوال : آیا برهانی بر بی نهایت داریم ؟ استاد : در همین مجموعه اعداد طبیعی که از یک شروع می کنید ، آیا به جایی می رسید ؟ سائل : بالأخره چون غیر خدا است ، به خدا منتهی می شود . پس همان طوری که یک روزی شروع شد ، یک روزی هم تمام می شود . استاد : خلاصه می گویید یک تَهی دارد که یک عددی است . سائل : بله . استاد : آیا می توانید یک عدد به آن عدد اضافه کنید یا محال است ؟ سائل : محال نیست ولی اثبات بی نهایت بودنش را نمی کند . چون اگر بی نهایت باشد ، فرقش با خدا چیست ؟ خدا هم ته ندارد . استاد : شما می گویید : محال است غیر خدا وجود داشته باشد ؟ سائل : من هر چه فکر می کنم ، سر از وحدت وجود در می آورم . چون اگر بخواهم غیر خدا را تصور کنم ، باید ظرفی را تصور کنم که خدا در آن نیست و غیر خدا هست . استاد : من راهنمایی بودم که یکی از معلم ها سر کلاس گفت ( که بعد ها در شیعه در اسلام دیدم ) : یک کره ای را مثلا در نظر بگیرید و محیطش را ببرید تا بی نهایت . این کره چند تا ممکن است باشد ؟ یکی . این مثال خیلی خوب است که انسان با فهم آن ، بین بی نهایت بودن و تعدد ناپذیر بودن رابطه برقرار می کند . نمی شود بی نهایت دو تا باشد . ولی بعدا که فکر می کردم دیدم دومی هم برای کره پیدا کردم . در یک زمان دیگر . یکی کره ی دیروز که معدوم شده و یکی کره ی امروز . مرحله ی جدید این بود که کره ای را فرض بگیریم که هم در ابعاد ثلاثه و هم در بُعد زمانی بی نهایت باشد . دیروز تا بی نهایت گذشته و فردا تا بی نهایت آینده . این کره دیگر یکی است و فرض دومی ندارد ؟ بله که میشه . وقتی انسان عقلانیتش قوی شود و مراتب و انحاء ابعاد وجودی را درک کند ، مثلا می تواند دو تا کره در ابعاد چهارگانه تا بی نهایت فرض بگیرد اما یکی علت باشد و دیگری معلول یا یکی رقیقه یکی حقیقه یعنی در دو رتبه ی وجودی . با اینکه هر دو بی نهایت زمانی بودند ولی دو تا شدند . چرا ؟ به خاطر اینکه فقط در چهار بُعد بی نهایت فرض گرفته بود . بی نهایت یعنی برداشتن حد . حد حیث است نه جنس . وقتی می گوییم این خط بی نهایت است ، یعنی طرف راست و چپی که مال این خط است ، حدّش را بردار . نمی توانیم بگوییم که چون بی نهایت است همه جا را گرفت و دیگر دومی ندارد . چون همه جا را از حیث راست و چپ گرفت ولی می توانیم چند سانت بالاتر یک خط بی نهایت دیگر فرض کنیم . سائل : پس بی نهایت نبوده دیگه . استاد : از این دو حیث که بی نهایت است . بی نهایت یک مفهوم حیثی است . در آن حیثی که حد را برداشتیم دو تا معنا ندارد . وقتی می گوییم این خط نا محدود است ، در آن خوابیده که از حیث عرض محدود است یعنی مجاز نیستیم یک سانت بالاتر یا پایین تر برویم .
سائل : هر چه هم دو طرف خط را بی نهایت بگیریم ، بالأخره می رسد به خدا . پس فرض بی نهایت بودنش محال است . استاد : شما می گویید این خط بالأخره یک جایی می رسد . سائل : بله . استاد : اونجایی که شما می گویید متوقف می شود ، آیا می توانیم فرض بگیریم که آن ور تر برود یا نه ؟ سائل : محال است . استاد : چرا ؟ سائل : چون تهش می رسد به خدا . چون در ذهن من دو چیز هست : خدا و غیر خدا . این غیر خدا هر چه هم بخواهد وسیع شود ، خدا که نمی شود . سرش خداست ، تهش هم خداست . از طرف دیگر اگر بخواهم بگویم : خدا هست و غیر خدا ، در واقع خدا را محدود کرده ام . استاد : خب بر می گردیم به همان مثال عدد . چون عدد که خط نیست که بگوییم تهش به خدا می رسد . آیا عدد به جایی می رسد یا نه ؟ سائل : اصلا قبول ندارم که در خارج یک مجموعه ی اعداد بی نهایت وجود داشته باشد . استاد : یکی از براهین اقلیدس برهان بر این مطلب است که : عدد اول بی نهایت است . چه من باشم چه نباشم . چه من به آن یکی اضافه کنم چه نکنم . من آن را درک می کنم نه اینکه خلق کنم . لذا مؤسسات ریاضی هم افتخارشان این است که ما آخرین عدد اول را کشف کردیم . سائل : من می گم بالأخره آخرش خداست . استاد : این خدایی که می گویید آخرش هست ، می توانید فرض بگیرید که یک خرده گنده تر شود یا نه ؟ سائل : نه . استاد : چرا ؟ سائل : چون خدا حد ندارد . خط و عدد اول و آخر دارند ولی خدا اول و آخر ندارد . استاد : بی نهایت بودن خدا از سنخ بی نهایت بودن ابعاد مکانی نیست . بلکه بی نهایت وجودی است . اگر بگوییم خدا در ابعاد ثلاثه بی نهایت است ، سائل : خود بُعد با بی نهایت منافات دارد . استاد : بی نهایت یعنی برداشتن حد . چه چیزی را می خواهید بردارید ؟ سائل : چیزی را که نیست . استاد : چیزی را که نیست ؟!
سائل : یعنی حدی را که در خدا نیست ، تصور می کنیم و می گوییم : این در خدا نیست . استاد : اون حدی که می گویید نیست ، چیست ؟ سائل : نمی دانم . فقط می دانم یک چیز عدمی است . چون اگر برای خدا باشد برایش نقص است . استاد : این حدی که می خواهید از خدا نفی کنید ، یک چیز است یا چند چیز ؟ چند حیث است یا یک حد است ؟ سائل : گویا یک چیز بسیط است . استاد : یک حد بسیط است . بحث ما هم همین است . ما که می گوییم خدا بی نهایت است ، می خواهیم حد ها را از او نفی کنیم نه فقط یک حد را . سائل : بالأخره می خواهیم ماهیت حد را برداریم حالا به هر سنخ و صنفی . استاد : شما ماهیت را کلی می گیرید بعدش می گویید حد را بداشتیم . کلی را که نمی شود برداشت . مثل اینکه بگویم : کلی ی انسان را بزن ! کلی حد را هم نمی شود برداشت . اگر می خواهید بگویید من حد را برمی دارم یعنی هر حدی یک حیثی است . یک نحو خاصی است . من این ها را برمی دارم . مثلا من پشت این دیوار نمی بینم . این برای من محدویت است . این حد را از خدا بر می دارم . حد فقط بعد نیست . ندیدن { استاد فرمودند دیدن ولی ظاهرا منظورشان ندیدن بود } هم یک جور نقص است . برداشتن نقص دیدن غیر از برداشتن نقصِ { من که اینجا هستم ، آنجا نیستم است } . خدا هم اینجا است هم آنجا . چون حد ندارد . یعنی حد مکانی . خدا پشت دیوار را می بیند چون حد رؤیت ندارد . حد رؤیت هم یک حد وجودی است . سائل : اصلا مخفی ای برای خدا نیست که بخواهد که بخواهیم بگوییم سمیع و بصیر است . همه امور برای خدا حاضر است . برای خدا غیر مسموع و مبصوری فرض ندارد که بخواهیم بگوییم سمیع یا بصیر است . چون ما سمع و بصر داریم ، به ما گفته اند که خدا سمیع و بصیر است . روی این اساس هیچ بی نهایت دیگری غیر از خدا تصور نمی شود . هر بُعدی هم برای چیزی بی نهایت فرض کنید ، در همین بُعد محدود است چون تهش خداست . اگر هم بگوییم بی نهایت نسبی است ، مسخره است . چون دیگر در حقیقت بی نهایت نیست . استاد : یعنی شما می خواهید بفرمایید که وقتی می گوییم : خدا ، یعنی بی نهایت . یعنی چیز دیگری غیر از او نیست . خب چرا می گویید این بی نهایت دو تا بر نمی دارد ؟
سائل : چون با بی نهایتی که فرض کردیم منافات دارد . استاد : بی نهایت مفهومی است منعطف . یعنی وقتی می گوییم نهایت ندارد ، یعنی چی نهایت ندارد ؟ سائل : همان ذاتی که نمی دانیم چیست . استاد : بی نهایت یعنی چه ؟ سائل : یعنی چیزی که حد ندارد . استاد : این حد چیست که او ندارد ؟ همین حدودی که ما داریم . استاد : احسنت ، این حدود را ندارد . من هم دنبال همین هستم . شما اگر حیثیات در ذهنتان بسط پیدا کرد ، سائل : من از طرف محدود نمی خواهم جلو بیایم . از آن طرف جلو می آیم . استاد : به عبارت فنی و کلاسیک : بی نهایتِ بما لا یتناهی شدّة و مدّة و عدّة را فرض می گیرید و می گویید : این که دو ندارد . پس هر شیءی را بخواهند بی نهایت فرض کنند ، قبول نمی کنید . سائل : درست است . استاد : به هر حال بی نهایت عنوانی است سلبی . نهایت چیست که او ندارد ؟ حد چیست که اوندارد ؟ فوری می گویید یک سری . . . یعنی متعددش می کنید . آیا هر کدام از این سری ، با هم دیگر باید بی نهایت بشوند ؟ یا اینکه به صورت تک تک هم می توانیم حد را برداریم ؟ قطع نظر از دیگری . مثلا خط در طول بی نهایت است ولی در عرض محدود است . آیا این ممکن است یا نه ؟ سائل : اگر بخواهیم خط را در طول هم بی نهایت بگیریم ، در حقیقت جلوی بی نهایت بودن خدا را گرفته ایم . استاد : اگر بگویید وقتی به خدا می سد ، می ایستد ، پس خدا را هم محدود فرض کرده اید ! وقتی می گویید خدا نامحدود است ، خب این خط هم همراه خدا برود جلو و جایی توقف نکند . سائل : لذاست که نمی توانم خدا وغیر خدا را تصور کنم . استاد : شما قبول دارید که خدا بی نهایت است ؟ سائل : بله . استاد : خب چرا می گویید خط یک جا بایستد ؟ خب همراه خدا می رود جلو . سائل : خدا بی نهایت است نه به این معنا که برود . استاد : پس چطور جلوی رفتن خط را می گیرد ؟! شما می گویید خط به جایی رسید که تمام شد ؟ سائل : خط وقتی به خدا می رسد تمام می شود . استاد : پس خدا آنورتر نمی تواند برود ! سائل : نه ، خدا که تمام نشده است . استاد : اگر خدا تمام نشده ، پس خط هم همراه خدا برود . سائل : یعنی می خواهید بگویید خط یعنی خدا ؟ استاد : نه ، همراه خدا برود . همراه بی نهایتی ی خدا جلو برود . سائل : حالا که با خدا همراه شده ، آن ( هم ) خدا هست یا نه ؟ استاد : آن همراهی تا بی نهایت همراهی ی خداست در این حیث . همراهی خدا در طول نه در عرض . خدا در عرض هم هست .
سائل : در همان جا که آن خط هست ، خدا هم هست یا نه ؟ استاد : بله . ولی در یک حیث . در حالیکه خدا دربی نهایت حیث است . سائل : در همان حیث چی ؟ استاد : در آن حیث همراه خداست . هر چه برود ، خدا هست و او هم همراه خداست . اما این به این معنا نیست که خط شد خدا . چون خط یک حیث است . سائل : پس غیریت دیگر تصور نمی شود که این خط غیر خداست . استاد : چرا غیریت تصور نشود ؟ خدا بی نهایت است از جمیع جهات ولی این خط بی نهایتاست از حیث واحد . سائل : شما که می گویید : خط از حیث واحد بی نهایت است یعنی دیگر ته ندارد . استاد : از این حیث ته ندارد . سائل : من می گویم : ته ِ همین حیث به خدا می رسد . استاد : یعنی چه به خدا می رسد ؟ اگر خدا بی نهایت است ، پس چرا او را ته این خط می گیرید ؟ سائل : . . . استاد : خدا بی نهایت هست یا نه ؟ سائل : بی نهایت است . استاد : کجا می رسیم که خدا تمام شود ؟ سائل ک هیچ جا . استاد : پس چرا می گویید خط جلو نرود ؟
سائل : چون من خط را غیر خدا تصور کردم . استاد : غیر هم هست . سائل : وقتی غیر خدا باشد که امکان ندارد . . . استاد : خدای بی نهایت چرا جلوی حرکت خط را بگیرد ؟ این خط در ملک خدا دارد جلو می رود . شما هم که می گویید خدا بی نهایت است . سائل : پس این خط را بخشی از خدا می دانیم استاد : نه ، در ملک خداست . سائل : در ملک خداست یعنی غیر خداست ؟ استاد : خدا که بی نهایت است . پس هیچ جا خدا نمی آید جلوی این خط را بگیرد که از اینجا جلوتر نرو . چون بی نهایت است . خدا بی نهایت چه ممانعتی برای پیشرفت این خط ایجاد می کند ؟ چرا خدا بگوید از اینجا جلوتر نرو ؟ سائل : آیا عالمی که این خط در آن است ، همان عالمی است که خدا در آن وجود دارد یا یک عالم دیگری است ؟ استاد : این بستری است که خدا برایش فراهم کرده است . خدای بی نهایت برای خط بی نهایت بستر بی نهایت را فراهم کرده است . سائل : این بستر در این خدای بی نهایت هست یا نیست ؟ استاد : نه ، چون او خالق است و رتبه ی وجودیش فرق می کند . این بستر بی نهایتِ من جمیع الجهات نیست اما خدا بی نهایت ِ من جمیع الجهات است . سائل : اینکه می گویید : این بستر بی نهایت من جمیع الجهات نیست ، یعنی جایی است که خدا در آن جا نیست یت هست ؟ استاد : جا یعنی چه ؟ خود جا محدود است . إنّه عیّن الأین فلا أینَ له . خدا جا را جا کرده و لذا بی نهایت است . اگر جا بخواهد که محدود می شود . سائل : همان جایی که جا شده ، آیا وجود خدا در آن جا هست یا نه ؟ استاد : هم هست و هم نیست . داخل فی الأشیاء لا بالممازجة ، لا بالحلول . خارج عن الأشیاء لا بالمزایلة . سائل : همین برای من حل نمی شود . الآن همین جایی که این کتاب است ، بگوییم خدا هست یا خدا نیست ؟ اگر بگوییم خدا هست ، لازمه اش این است که خدا تجزیه شود و این بی نهایت جزئی ازاو باشد . اگر بگوییم خدا نیست ، لازمه اش همان حدی است که دارم از آن فرار می کنم . یعنی من هم می خوام از محدود بودن خدا فرار کنم هم در آن می افتم ! لذاست که می گویم نا متناهی نداریم . چون اگر آن نامتناهی را غیر خدا بدانیم ، تهش می رسد به خدا . استاد : از کجا می گویید اگر خدا در این هست ، پس محدوده در این هست . این پس را از کجا می گویید ؟ چون در همین علم امروز می گویند : این کتابی که دارید می بینید ، بخشی از آن را می بینید و واقعیتش گسترده تر است . سائل : پس بگوییم جزئی از خداست ؟ استاد : نه ، جواب مرا بدهید . می گویند این که دارید می بینید ، واقعیتش گسترده تر است . پس خدا می تواند در این باشد و در عین حال بیرون از آن هم باشد . سائل : ولی نمی توانیم لمس کنیم که چطور خدا هم می تواند در این باشد هم نباشد . یکی از حاضرین : مثل آدمی که در ذهن شماست که شما در همه جای آن آدم هستید و هیچ جای او هم نیستید . یکی دیگر از حاضرین خطاب به سائل : شما که می گویید خط در بی نهایت به خدا می رسد ، در همان سانتیمتر اول هم به خدا می رسد . سائل : قبول دارم . برای همین می گویم : همه چیز محدود است و هیچ بی نهایتی هم نداریم . حاج آقای مؤذن : تکان بخورد ، می خورد به خدا ! ( خنده شدید حضار ) . استاد : آن جایی که فرض می گیرید که دیگه نمی گذاریم جلوتر برود ، من میروم در همان نقطه و می پرسم : چرا جلوتر نمی رود ؟
سائل : چون به قول آقا خورده به خدا . استاد : خب ، همان اول هم بخورد به خدا . سائل : با این حساب بگوییم : ما در واقع بخشی از وجود خدا هستیم و در عین حالی که بخشی از وجود خدا نیستیم . هستیم تا این قضیه حل بشود و نیستیم تا محدودیت برای خدا حاصل نشود . همان داخل فی الاشیاء لا بالممازجه و خارج عناها لا کخروج شیء عن شیئ . اما برایم ملموس نیست که چطور در عین حالی که بخشی از خدا هستیم ، نیستیم . همه این حرف های من برای این است که خدا حد نخورد . به نظر من اگر بی نهایت فرض کردیم ، آنجایی که این بی نهایت هست اگر بگوببم خدا نیست ، به همین مقدار حد خورده است و اگر بخواهید بگویید جایی که بی نهایت هست ، خدا هم هست ، پس باید بگوییم آن بخشی از خداست . لازمه اش تجزیه ی خدا و اینکه بگوییم ما جزء خدا هستیم ، است . استاد : خب حالا اگربگوییم که ما جزء خدا هستیم ، خط بی نهایت می توانید فرض بگیرید یا نه ؟ سائل : خیلی راحت ، در این صورت همه چیز بی نهایت می شود . در حالیکه از مُسلّمات شیعه است که خدا غیر مخلوقش است . استاد : این جور خدایی از مسلمات شیعه است ؟! خدایی که جلوی خط را می گیرد و نمی گذارد جلو برود ؟! حضرت فرمودند ( إذا احتمال الزیادة احتمل النقصان ) اگر بخواهید اینجور از خدا دفاع کنید ، خدا را به جای بالا بردن پایین آورده اید . یعنی به خاطر فرار از محدودیت ، عین محدودیت را برای خدا فرض گرفته اید ! سائل : لذاست که گفتم قائل به عینیت بشویم . استا : چرا عینیت ؟ چرا فوری ملازمه می گیرید و می گویید : چون این خط تا بی نهایت می رود ، پس خداست !
سائل : چون در مسیری که دارد می رود اگر خدا هست پس این خط خدا می شود . اگر نیست ، پس اینجا خدا نیست . استاد : هر حدّی مصداقی است از یک طبیعی . این مصداق خودش می تواند در آن حیثیت بالفعلی که دارد ، بی نهایت شود . یک خط در نظر می گیریم از نقطه الف تا بی نهایت . خب خط دیگری را هم می توانیم از نقطه ی باء تا بی نهایت فرض بگیریم . چون دو فرد هستند . اما خود صرف الخط و طبیعت خط ، دیگر دو تا فرد ندارد . مطلب دیگر اینکه در خود طبیعت خط یک حد وجودی است . یعنی صرف الخط اگر چه دو تا و سه تا ندارد ولی در دلش خوابیده که عرض ندارد . یعنی مُقوّم خط این است که از نظر عرض محدود است . پس سک جور حدی را برداشتیم اما حد دیگر مُقوّم طبیعت آن است .
سائل : یعنی یکی از حیثیت های خدا در آن هست . استاد : صبر کنید معلوم می شود . اگر حیث عرض را هم برداریم ، می شود سطح بی نهایت . این سطح بی نهایت افرادی دارد بی نهایت و صرف السطحی هم داریم که بی نهایت است . این سه مرحله از بی نهایت . ولی به صرف السطح هم می رسیم ، باز از حیث عمق محدودیت در ذاتش خوابیده است . خب بُعد سوم را به آن اضافه می کنیم و یک محدودیت را بر می داریم . شد سه بُعد بی نهایت و سعه ی وجودیش رفت جلو . اگر کسانی باشند که در دو بُعدی زندگی کرده باشند و سه بُعد را ندیده باشند ، وقتی خدا را تصور می کنند ، می گویند : خدا که نمی شود بالا و پایین برود ! یعنی برای خدا هم بُعد سوم را ممکن نمی دانند . خب ، رسیدیم به حجم . حجم هم افرادی دارد . یکی از افرادش کره دیروز و فرد دیگرش کره امروز است و فرد دیگرش کره ای است بی نهایت زمان دارد ، فرد دیگرش کره زنده و فرد دیگرش کره ی غیر زنده است . یعنی کره ای که در چهار بُعد بی نهایت فرض گرفته ایم ، هنوز ساکت است از اینکه شعور هم دارد یا ندارد ؟ چون شعور بُعدی است که ربطی به طول و عرض و عمق و زمان ندارد . بُعد پنجم و کمال دیگری است . همچنین کره ای را فرض می گیریم که ببیند و بشنود و کره ای که نبیند و نشنود به معنای علم به مبصرات . می بینید که سمع و بصر بُعدی است غیر از طول و عرض و عمق . پس نباید وقتی گفتیم بی نهایت ، فقط یک چیز را در نظر بگیریم . پس وقتی به صرف الحجم رسیدیم ، در آن هم محدودیتی است که ربطی به بُع چهارم و زمان ندارد . بُعد چهارم را به آن اضافه می کنیم . جالب این است که الآن ما می گوییم : زمان بی نهایت . در حالیکه همین زمان بی نهایت چندین فرض دارد . اگر بگویید یک فرض دارد ، تازه یک فرد زمان را بی نهایت کرده اید . ما زمان ها داریم . اینی که ما فرض گرفته ایم ، یکی از افراد آن است . . افراد بُعد چهارم بی نهایت اند . بعدش می رسیم به صرف الطبیعه ی بُعد چهارم . از اینجا به بعد می رسیم به ابعاد جدید که در هندسه حالا می گویند : هندسه إن بُعدی . یعنی هر چه بُعد بخواهی اضافه کنی ممکن است . تا بُعدها چی باشه . بُعد هایی که الآن منظر ماست ، ریخت فلسفی دارد نه هندسی . از اینجا به بعد ابعاد می شود ابعاد وجودی که با مصداق و طبیعت سر و کار دارد . یعنی علم و لا علم و عالم و لا عالم افرادش می تواند افرادی باشد موجود که برود تا بی نهایت یعنی تا جایی که برسد به صرف العلم . ریخت صرف العلم چیزی است وراء فرد وجوداتی که با چیزهای خاصی در نظر می گیریم . می رسد تا جایی که می شود بی نهایت به توان بی نهایت . یعنی بی نهایت حیث متصور است چون کمالات بی نهایت است . این بی نهایت حیث که هر کدام هم خودش بی نهایت است . یعنی بی نهایت بار بی نهایت ضرب در بی نهایت . تازه این خدا نیست . حتی دون مقام معصومین هم است ! بلکه ظهور مقام آن هاست . همه ی این مطالب قابل تصور است بدون اینکه لازم باشد بگوییم معصومین خدا هستند . همین چیزی که بی نهایت ِ به توان بی نهایت حیثیات کمال وجودی را در خودش جمع کرده است ، خدا نیست . بلکه مخلوق است . لذا حضرت فرمودند : حدّدتَه . با اینکه راوی داشت حد ها را بر می داشت و می گفت : اکبر من کل شیء ، همین برداشتن حدها ، انغمار در محدودیت است . فرمودند : باید گفت : اکبر من أن یوصف . اگر می گوییم اکبریّت ، به معنای بی نهایت فضایی نیست . خدایی که بی نهایت فضایی است که خدا نشد . { احتمال دارد که اصل فضا از سریان نفس در بدن شروع می شود . اگر در عالمی بودیم که خدای متعال برایمان بدنی اینگونه قرار نداده بود ،اصلا فضا را تصور نمی کردیم }
سوال : آیا می شود گفت : دو نوع بی نهایت داریم : یک بی نهایتی که قابل درک ما است و بی نهایتی که مخصوص ذات واجب الوجود است . استاد : اصلا ذات واجب الوجود طوری است که سبقت دارد بر اصل نهایت و لا نهایت . یعنی خدای متعال بین حد و لا حد جدا می کند و خودش را نمی توانیم بگوییم محدود است یا لا محدود . ( بتجهیره الجواهر عُرف أن لا جوهر له ) اوست که طبیعت جوهریت را او تجهیر می کند . دیگر معنا ندارد که بپرسیم : جوهر خودش چیست ؟ لذا خدا بی نهایت نیست . بی نهایت اول الحد است ( بمضادته بین الامور عُرف أن لا ضد له ) او بر اصل حقیقت مضاده سابق است . دیگر نمی شود خودش ضد داشته باشد . اوست که اجازه ی سیر بی نهایت را می دهد . آنوقت می گویید بیاید جلویش را بگیرد ؟! او فراهم کننده و سابق بر همه ی این هاست . در اصول فلسفه جلد پنجم هم اشاراتی به این مطلب دارند . وقتی در الهیات خدا را اثبات می کنند و به بی نهایت می رسند ، می گویند : حق این است که حتی این تعبیر که ( خدا بی نهایت است ) خودش نوعی حد است . بلکه خدا از این هم بالاتر است . مراجعه کنید
لذا اینکه شما می گویید : خدا بی نهایت است ، از روز اول اهل بیت جلویش را گرفته اند . می گویند این که محدود شد . سائل : آخه خودشان در تعبیراتشان لیس له نهایة دارند . استاد : خب ، بادی همه را با هم جمع کنیم . لیس له نهایة یعنی نهایات . این نهایة یعنی مطلق النهایة . چون او غایة الغایات است فلا غایة له . او غایت غایت است نه اینکه این خط یک غایتی دارد و غایتش خداست . قبل قبل است به این معنا نیست که از قبل باید به یک جایی برسیم که بایستیم و آن خداست . قبّل القبل فلا قبل له یعنی اگر او قبل هر چیزی است به خاطر این است که او قبل را قبل کرده است . نه اینکه اگر قبل را بی نهایت فرض کنیم ، به جایی می رسیم که از خدا رد می شویم
حاصل عرض من این است که : اولین قدم رشد عقلانیت منطق ما این است که ترتّب ابعاد وجودی را درک کنیم . اگر توانستیم مراتب وجودی را منسلخ از بسط قوه ی خیال { قوه ی خیال تاب تصور بی نهایت را ندارد و از تصور آن غش می کند ولی اگر به صورت عقلانی بی نهایت را درک کنیم لذت هم می بریم و بی نهایت بودن مانع درک صحیح آن نیست . لازمه ی در ک بی نهایت هم درک خدا نیست . چون خدا را عرض کردیم که بی نهایت نیست . خلاصه مسأله لا حدّی منافاتی با تعقل لا حدّی ندارد }

پایان جلسه در دقیقه ی 59 ولی سوالات سائل ادامه دارد !

استاد : ترتب دو تا وجود و دو وجود در طول هم . . . در عرض او نیستند و لذا او به همه ی این ها احاطه ی ذاتی و وجودی دارد
استاد : عرض کردم که کره ای را فرض بگیرید بی نهایت حتی از حیث زمان . آیا می شود دوتا اینجور کره ای را تصور کرد ؟ بله ، یک کره ی اینجوری که زنده باشد و یکی که زنده نباشد . سوال : دومی در چه زمانی باشد ؟ اولی که همه ی زمان ها را گرفت استاد : بله ولی دو حیث است . به عبارت دیگر . . . سائل : وقتی تمام حجم ها و تمام زمان ها را بی نهایت فرض کردیم ، بیش از یک چیز تصور وجودی ندارد . استاد : چرا توانستید بالای یک خط بی نهایت خط بی نهایت دیگری را فرض بگیرید ؟ سائل : چون از این حیث محدود است . استاد : در اینجا هم وقتی تصور کنیم که دومی از حیث بُعدی که اولی فاقد آن است ، امکان فرضش هست . وقتی پای ابعاد دیگر به میان آمد ، فضا باز می شود و وجود دومی منافاتی با اولی ندارد به شرطی که ابعاد را وجودی ببینیم ، رتبه ها را کمال وجود ببینیم و کمال وجود را به سریان در فضا نبینیم
سائل : وقتی شما هم بی نهایت را می گویید و هم بحث بُعد را مطرح می کنید ، ذهن من به هم می ریزد . استاد : من نمی توانم تعریفی برای نفی بدهم مگر به تعریف منفی . شما می گویید : ( بی ) ولی من می خواهم بگویم بی ( بی ) است . منظور شما از (بی) چیست ؟ آخه (بی) مضاف الیه دارد . بی ی مطلق که نمی گویید . می گویید بی نهایت . سائل : هر چیزی که برای خدا تصور کنید غیر خدا می شود نهایت . استاد : خیلی خوب شد ! الآن این کتاب چیزی غیر خدا هست یا نیست ؟ سائل : هست . استاد : پس خدا شد محدود ! سائل : من هم توی همین ماندم . استاد : قبلا عرض کردم : چون خدا هیچ جا نیست ، همه جا هست . بلاتشبیه مثل نفس . سر انگشت پا نفس هست . چون دارید حس می کنید . در همین حال سر انگشت دست هم هست . هر دو جا هست و هیج جا هم نیست . می بینیم که نفس عین این دو جا هم نیست . پس چه مشکلی دارید که وقتی خدا در یک چیزی حاضر باشد ، می گویید باید همین جا باشد و اگر هم آنجا بخواهد باشد برایش در اینجا محدودیت می آورد . اینکه انگشت اینجاست و نفس هم اینجاست ، برای نفس محدویت آورده است ؟ سائل : طبق مقدمات عقلی که من تصور کرده ام ، صد در صد محدودیت است . البته چون نقل فرموده که بین خالق و مخلوق غیریت وجود دارد . . . استاد : نه عقل نه نقل . بلکه طبق ارتکاز ساده ی خودمان احساس که دارم که نفس در انگشت من حاضر است ، باعق محدودت نفس به اینجا می شود یا نمی شود ؟
سائل : می شود . استاد : پس چطور در همین حال همان نفس در انگشت دست هم حاضر است و اگر سوزن بزنند ، می فهمد ؟ سائل : خب این حس را خدا به من داده که می توانم این مطلب را درک بکنم . استاد : نمی شود که خدا درک محال را به ما بدهد . محدودیت آورد یا نه ؟ سائل ک بله الآن یک تکه ی نفس من در این جاست . استاد : پس چطور در انگشت دست هم من هستم ؟ سائل : من با اتصال به وجود خدا توانسته ام هم این را درک بکنم هم آن را . استاد : یعنی در این تکه خدا شده ام ؟ سائل : نه ، متصل به خدا شده ام . قوه ای است که خدا به من داده است . و گرنه از نظر استدلال نفس که اینجا حار است ، محدود به همین جاست . اگر کسی برایم مجرّد را اثبات کند ، استدلالم خراب می شود . استاد : خب ، در آن انگشت هم حاضر هست یا نیست ؟ سائل : یک تکه ی دیگرش هست . استاد : دوتاست یا یکی است ؟ سائل : دو تکه از یک چیز است . آن یک چیزی که می گویید یعنی دو تکه ی کنار هم است یا یک مُدرک است ؟ سائل : مُدرک واحد است . استاد : چه جور واحدی ؟ واحد تشکیل یافته از دوتا جزء ؟ سائل : واحد است اما اینکه دو چیز است ولی دو نقش دارد را به قدرتی که خدا به من داده می توانم درک کنم . استاد : خدا چگونه این قدرت را داده که با برهان شما سازگار است ؟ سائل : اینجا دیگه من نمی دانم . استاد : من توضیحش را عرض می کنم : من که اینجا هستم سائل : من نیستم ، جزء من اینجاست . استاد : صبر کنید . من که اینجا احساس می کنم به خاطر این است که این انگشت و نفس من دو رتبه ی وجودی هستند و به همین جهت است که درانگشت محدود نمی شود . این انگشت و آن نفس مدرکه دو بُعد و دو رتبه ی کمال هستند . چون نفس رتبه اش اکمل است ، اینجا می آید ولی محدود نمی شود . به همین جهت در انگشت دست هم حاضر است .
سائل : چرا نمی گویید یک تکه اش اینجاست و یک تکه اش آنجاست ؟ استاد : چون خلاف وجدانم است . چون یک نفرم و هر دو تا را دارم احساس می کنم . سائل : من که خودم را در انگشتم حس نمی کنم . درد را حس می کنم . استاد : آیا این دو واقعا دو تاست ؟ سائل : دو تاست با یک ادراک واحد . استاد : شما استدلال می کنید که وقتی اینجا آمد محدود می شود بعدش می گویید خدا محدودش نکرده است . سائل : من که نگفتم نفس محدود نیست . استاد : حضور نفس در این انگشت را می گویم . سائل : نفس در انگشت حضور ندارد بلکه ادراک می کند . استاد : همین ادراک محدود به اینجا هست یا نیست ؟ سائل : بله . استاد : خب خود مُدرک چطور ؟ سائل : خود او اینجا نیست بلکه در کل وجود ما سریان دارد . استاد : کل چیزی جز اجزاء نیست . سائل : شما می خواهید بگویید این اجزاء مادامیکه غیریت دارند نمی توانند درک واحد داشته باشند . استاد : بله ، واضح است . سائل : عین یک آینه است که اجزاء مختلف است ولی یک تصویر را نشان می دهد . استاد : یک تصویر نیست بلکه نورهایی است که از نقاط متعدد می آیند . سائل : درست است ولی با این حال یک تصویر می بینیم . استاد : نه ، یک تصویر نیست ، پخش است . اگر نصفش را بپشانیم ، نصف تصویر را نمی بینیم .
سائل : ولی وقتی بدون مانع جلوی آینه می ایستیم ، یک انسان کامل در آن می بینیم در حالیکه چیز بسیطی وجود ندارد استاد : این غیر از حضور نفس است . تصویر یک چیزی ندارد که در همه ی نقاط تصویر حاضر باشد . سائل : فهم این از درک من خارج است . چون استدلال قوی دارم استاد : از درکتان خارج نیست بلکه خلاف برهانتان است . شما برهان آوردید که این درک محدود است در انگشت . سائل : چون از خارج اثبات می کنیم که مجردی وجود ندارد ، مجبور می شویم قائل شویم که این ها اجزاء هستند و درک واحدشان هم به خواست خداست . استاد : خب خدا وقتی این درک را به ما داد ، آن واحد در انگشت محصور است یا نیست ؟ سائل : محصور است . استاد : شما که می گویید واحد است . سائل : این حس واحدی که دارم به خاطر اتصال به خداست . چه جوریه ؟ نمی دانم . استاد : بعد الاتصال محدود در این هست یا نیست ؟ سائل : محدود است ولی درکش واحد است نه اینکه مدرک واحد باشد . مدرک متشکل از اجزاء مختلف است ولی یک درک واحد دارد . چطور یک مدرک متشکل از اجزاء درک واحد دارد ؟ به اتصال الی الله . استاد : خب بعد از اینکه آن درک آمد ، سائل : این درک پخش شده در تمام اجزاء . استاد : یکی است و پخش شده یا وقتی پخش شد ، متعدد است ؟
سائل : درکم واحد است . استاد : چه جور واحدی ؟ واحدی که چسباندن پنجاه تا درست شده مثل تصویر ؟ سائل : نه ، درک چیزی غیر از من است . استاد : من آن أنا را می گویم . سائل : آن أنا واحد است . استاد : واحد تصویری است ؟ یعنی تکه تکه هستید و بهم چسباندنتان ؟ سائل : ملازمه ندارد که مدرک هم واحد باشد . درک واحد است ولی مدرک ذوالاجزاء است . اما اینکه چطور ذوالاجزاء درک واحد می کند ؟ یک موجود دیگری خارج از ذاتش این قدرت را به او داده که بتواند درک واحد کند استاد : بعد از اینکه این قدرت را به او داد ، یک امر واحد غیر متجزی ی غیر تصویری شد یا نه ؟ سائل : نشد . استاد : پس چطور بهش داد ؟ معدوم بهش داد ؟ آن قدرت را داد یا نداد ؟ سائل : داد . استاد : خب آن مقدور واحد است یا نه ؟ شما می گویید داد ولی لوازمش را نمی خواهید بار کنید ! یک چیز موجود بهش داد یا یک چیز معدوم ؟ سائل : قدرتی که داد موجود است . استاد : این موجود چگونه است ؟ سائل : ذوالاجزاء .استاد : یعنی پنج تاست ؟ اینکه واحد نشد . سائل : درکش واحد است ولی مدرک دارای اجزاء است . استاد : آن درک موجود است یا معدوم ؟ سائل : درک موجود است ؟ استاد : محدود در تک تک اجزاء هست یا نیست ؟ سائل : نه ، درک محدود به این ها نیست . استاد : پس چیزی است موجود و واحد و محدود در اجزاء هم نیست . . . تا دقیقه ی 78 ادامه داشت
در پایان به سائل محترم خسته نباشید می گویم !

 

 

جلسه تفسیر

تقریر آقای وافی در وبلاگ:

چهارشنبه ( 14 / 3 / 2012
24-12-90
21 ربیع الثانی 33

سوال . استاد : یک دایره در نظر بگیرید . یک درون دارد و یک برون . دایره بر درون خود محیط است . هیچ چیزی نیست که توی دایره باشد ولی ربطی به دایره نداشته باشد . این دایره هر آنچه را که در آن است ، داراست . اما واجد بیرون خودش نیست . تمام طبایع صرفه اینگونه اند . هر چه که اندورنشان هست ، خودشان برخوردار از اطلاق هستند نسبت به آن ها ولی { ظاهرا واژه ی ولی سهواللسان است }هر چه حالت برونی {هکذا فی النوار و الظاهر ان مراد الاستاذ : درونی بدل بیرونی } دارد نسبت به آنها ، اصل الطبیعه نسبت به او مطلق است یعنی بی نهایت است { واژه بی نهایت هم یک نحو تعبیر است و گرنه بالاتر از بی نهایت است } اما هر چه که بیرون از نفس الطبیعه هست ، طبیعت نسبت به او محدود است . پس نسبت به درون خودش حالت اطلاق ذاتی لایتناهی دارد اما همین نسبت به کمالاتی که در عرض و برون اوست ، نه . مثلا طبیعة العلم و طبیعی ّ العلم ، هر فرضی که شما بگیرید در زمان و مکان های مختلف و بی نهایت افراد جور و واجور علم ، همه در این طبیعی هستند . نمی شود طبیعی العلم ، فاقد او باشد . اما قدرت ، دیگر در علم قدرت نخوابیده است . حیثیت کمال علم کنار حیثیت کمال قدرت است . هر کدام چیزی هستند برای خودشان . مثلا اگر طبیعی البقر را پذیرفتیم ، از حیث بقریّت هیچ چیز کم ندارد . نمی شود چیزی در بقریّت پیدا کرد که این طبیعت نداشته باشد . یعنی نسبت به کمالات بقریّت ، لا یتناهی است و حدّ ندارد . اما در طبیعی البقر انتظار کمالات طبیعی الانسان را نباید داشته باشیم . سوال : آیا با یان توضیح که ر چه در بقر هست در طبیعتش هم هست ، طبیعت بی نهایت شد ؟ استاد : یعنی طبیعی البقر از حیث بقر بودن لایتناهی است . یعنی نمی توانید چیزی را فرض بگیرید که کمال بقریت را نشان دهد ولی در طبیعی البقر نباشد . یعنی وقتی به طبیعت رسیدید ، به اطلاق ذاتی رسیدید . اطلاق ذاتی یعنی هیچی نسبت به بقریت کم ندارد . اگر بی نهایت فرد بقر را در نظر بگیریم ، این طبیعت همه ی آن ها را از حیث بقریت واجد است . پس طبیعت از حیث درون خودش هیچ حدی ندارد و مطلق است
سوال : آیا ممکن است چند طبیعت تحت طبیعت صرفه ی دیگری به عنوان مصداق او قرار بگیرند ؟ استاد : بله . بین اعیان ثابته و طبایع طولیت برقرار است و با کمک و تفاعل همدیگر مادونشان را پدید می آورند . نظیر جنس و فصلی که در منطق می گوییم . هر کدام یک مقوله هستند ولی باهم دیگر نوع را پدید می آورند . البته مثال است و همراه با مسامحه
سوال . استاد : آخوند در اسفار می گوید : ما اصلا مفهوم کلی را درک نمی کنیم . بلکه خیال منتشر است یعنی وقتی می گوییم : انسان ، یک چیزی را که در دل زید و عمرو و بکر پخش است درک می کنیم . خیال منتشر که کلی نیست . از مرحوم طباطبایی پرسیدند : شما کلی را بدون انتشارش در مصادیق درک می کنید ؟ فرمودند : تا حدّی !
طبایع همه جا حضور دارند . انس ما به وجود ذهنی و خارجی افراد است و توجه نداریم که طبایع هستند که این وجود ذهنی و خارجی را سر و سامان می دهند . از بس واضحند و همه جا حضور دارند ، از آن غافلیم . یکی از چیزهایی که خیلی ذهن را در انس گرفتن به طبایع کمک می کند ، فکر کردن در نفس اعداد است . مثلا عدد 2 . کمی ذهنتان را تلطیف کنید . وقتی می گویید : دو تا دو می شود چهار ، یعنی دو تا فرد از دو . بالأخره دو تا ست . اما به جایی می رسم که می گویم : عدد دو . در مقابل عدد یک . از این عدد دو و حقیقت دو چند تا داریم ؟ یکی . به این معنا که اصلا دو برایش نمی توان فرض کرد . به این می گوییم : طبیعت دو . طبیعیِّ دو . هر چه جلوتر می روید می بینید عجب دستگاهی است ! دستگاه حقایقی که منطق را تشکیل می دهد

 

 

جلسه ۶ توحید صدوق سال ۱۳۹۶

شاگرد: این‌که می‌گوییم خداوند بی‌نهایت است، این تکییف نیست؟ این‌که می‌گویند لا اسم و لا رسم له، فلا حدّ له، این تکییف نیست؟

شاگرد ٢: می‌توان به این صورت گفت: آن کیفیت­هایی که با تناهی ملازمت دارد را می‌توان نهی کرد؟ اگر بتوانیم کیفیت­هایی را تصویر کنیم که با نامتناهی سازگار است ... .

استاد: مبنای روشن کلاسیک همین است. یعنی «له کیفیة تلیق بجنابه». چون وقت تمام شده است، اشاره­وار عرض می‌کنم. در جلد پنجم اصول فلسفه، سه – چهار سطر دارند که از جاهای جالب آن­جا است. می‌گویند: تا حالا هر چه گفتیم، ثابت کردیم وجود مطلق، وجود غیر متناهی است. بعد می‌گویند به شما بگوییم که خود همین غیر متناهی بودن، خودش حد است. اشاره‌ای می‌کنند. اصلاً خود غیر متناهی بودن، حدّ است. یعنی چه؟ این خیلی ظریف است.

ما باید این را بدانیم که اساساً لایتناهی را در هرچه فرض بگیرید، خودش حدّ است. جلسه­ی دیگر یادآوری کنید تا عرض کنم چطور است که عدم تناهی حدّ است. خدای متعال فوق ما لایتناهی بما لایتناهی است. لذا جمله‌ای که حکماء دارند، نمی‌گویند ما لا یتناهی است. ما لا یتناهی بما لایتناهی، یعنی بی‌نهایت به توان بی‌نهایت. حکماء می‌گویند: بی‌نهایت به توان بی‌نهایت، صادر اول است. او فوق ما لایتناهی بما لا یتناهی است. البته باء را به ما لا یتناهی بزنید یا به فوق بزنید، هر دو وجهش هم هست.

در مورد کیفیت قبلاً صحبت شده بود. در توحید صدوق این حدیث آمده بود: «النعوت نعوت الذات لاتلیق الا به و اسمائها جاریة علی المخلوقین»18؛ می‌گفتیم صفات فوق العرش. آن مانعی ندارد. اما آن فضا، فضای دیگری است. تا از این طریق این بحث‌ها صاف نشود، نمی‌توانیم به آن­جا برسیم. باید این‌ها صاف شود تا ببینیم ... . فعلاً آن چیزی را که می‌فهمیم، درک کنیم که چطور است که لایتناهی حدّ است. لایتناهی که حدّ نیست! این تناقض است! شما می‌گویید: حدّ نیست. بعد می‌گویید محدود می‌شود؟! همانی که در روایت توحید صدوق خیلی زیبا خود امام علیه السلام شروع کردند. خود حضرت فرمودند: «اللّه‌اکبر» به چه معنا است؟ گفت: یعنی «اللّه‌اکبر من کل شیء». حضرت علیه السلام فرمودند: «حدّدته». خیلی زیبا است. من دارم می‌گویم: «اکبر من کل شیء»، چطور حدّدته؟! این رابطه خیلی مهم است. بعد عرض کرد پس چه بگویم که لم أحُدّ؟ فرمودند بگو: «اللّه ‌اکبر من أن یوصف ولو یوصف بأنّه لایوصف». اکبر من أن یوصف؛ یکی از توصیفات هم این است که لایوصف.

 

 

سوال و جواب

سؤال: مرادف تعبیر فوق ما لا یتناهی بما لا یتناهی در روایات چیست؟
جواب: التوحید (للصدوق) ص: 313. عن ابی عبدالله ع قال: قال رجل عنده الله اکبر فقال الله اکبر من ای شیئ فقال من کل شیئ فقال ابوعبدالله ع حددته فقال الرجل کیف اقول فقال قل الله اکبر من ان یوصف.