ذرات بنیادی

فهرست فیزیک
فهرست علوم
فیزیک کوانتوم
حضور یک ذره در دو مکان-برهم‌نهی کوانتومی-Quantum superposition



ذرات بنیادی ممکن است در ابتدا کلمه‌ای سخت و پیچیده به نظر برسد، اما اگر بدانید که تمام مواد اطراف ما از ذرات بنیادی تشکیل شده‌اند و بلوک‌های اصلی ساختار مواد، ذرات بنیادی هستند، شاید موضوع برایتان کمی ملموس‌تر شود. ذرات بنیادی شامل دو گروه اصلی «کوارک» (Quarks) و «لپتون» (Leptons) هستند که هر یک به صورت شش ذره جفت تقسیم می‌شوند. سبکترین و پایدارترین حالت این ذرات را به عنوان نسل اول و حالت‌های سنگین‌تر و ناپایدار را به عنوان نسل دوم و سوم معرفی می‌کنیم….(سایت فرادرس، مقاله ذرات بنیادی به زبان ساده)




دانشمندان یونان باستان حدس زده بودند که اشیای جهان باید از ترکیبات بسیار ریز و غیر قابل برشی تشکیل شده باشند. آنها این اجزای غیر قابل برش را اتم می نامیدند و بر این باور بودند که در تشابه با زبان که از ترکیب های بی شمار حروف الفبا به وجود می آید، گسترۀ عظیم مواد موجود در جهان نیز حاصل ترکیب های متنوعی از بلوک های سازنده ی مجزا است.

به گزارش بیگ بنگ، این حدس بسیار هوشمندانه بود، بطوری که پس از گذشت ۲۰۰۰ سال از آن زمان هنوز به قوت خود باقی است. به احترام سنت یونانیان باستان، این ذرات اتم خوانده شدند. امروزه می دانیم اتم ها قابل تفکیک به اجزای کوچک تری هستند، تا اوایل ۱۹۳۰، مجموعه ی کارهای تامسون، رادرفورد، نیلز بور و چادویک منجر به معرفی یک مدل اتمی منظومه ای شد که بیشتر ما با آن آشنا هستیم. مدلی که در آن اتم ها بسیار بزرگتر از واحدهای سازنده ی پایه ای هستند. در واقع یک اتم ترکیب از هسته ( ترکیبی از نوترون ها و پروتون) و دسته ای از الکترون های در حال چرخش به دور هسته است.

برای مدتی فیزیکدانان گمان می کردند پروتون ها، نوترون ها و الکترون ها، همان ذرات تفکیک پذیری هستند که در جست و جویشان بودند، اما در سال ۱۹۶۸ در مرکز شتاب دهنده خطی استنفورد، با کمک تکنولوژی ای که در آن زمان بسیار پیشرفته بود و امکان بررسی ماده در حوزه ی میکروسکوپی را فراهم می کرد، مشاهده شد پروتون ها و نوترون ها نیز بنیادی نیستند. این ذرات هر کدام از سه ذره ی کوچکتر به نام کوارک تشکیل شده بودند. دانشمندان تایید کردند کوارک ها در دو نوع متفاوت دیده شده اند و این دو نوع را بعنوان کوارک های بالا و کوارک های پایین نام گذاری کردند. یک پروتون از دو کوارک بالا و یک کوارک پایین ساخته شده است در حالی که یک نوترون حاوی دو کوارک پایین و یک کوارک بالا است.

پس به نظر می رسد هر چه روی زمین و جهان بیرون آن دیده می شود، از الکترون ها، کوارک های بالا و کوارک های پایین ساخته شده است. در میانه ی دهه ی ۱۹۵۰، فردریک رینز و کلاید کوون براساس مدارک تجربی قطعی به این نتیجه رسیدند که ذره ی بنیادی دیگری به نام نوترینو نیز در جهان وجود دارد؛ ذره ای که پاولی وجودش را در سال ۱۹۳۰ پیش بینی کرده بود. یافتن نوترینوها بسیار دشوار است، زیرا این ذرات شبه وار به ندرت با انواع شناخته شده ی ماده برهمکنش دارند. همچنین اواخر دهه ی ۱۹۳۰، فیزیکدان هایی که پرتوهای کیهانی را بررسی می کردند، ذره ی دیگری به نام میون را کشف کردند، ذره ای که مانند الکترون اما ۲۰۰ برابر سنگین تر از آن بود.

دانشمندان هم اکنون به کمک دستاوردهای گوناگون تکنولوژی که قدرتمندتر از گذشته شده است، ذرات را با انرژی های بسیار بالا به یکدیگر کوبیدند و با این کار سعی داشتند تا بطور لحظه ای شرایطی را که پس از بیگ بنگ پدید آمده بود را بازسازی کنند. آنها در تکه پاره های حاصل از برخورد این ذرات به هم، در جست و جوی ذرات جدیدی بودند تا آنها را به فهرست ذرات شناخته شده اضافه کنند. طبق شواهد دانشمندان همه ی مواد از دو ذره ی بنیادی موسوم یه «کوارک» و «لپتون» ساخته شده اند. در انرژی های خیلی بالا ذراتی مانند پروتون ها را نمی توانیم ذرات واقعا بنیادی ماده در نظر بگیریم. در انرژی های کم مثلا ۹^۱۰×۶ درجه ی کلوین می توانیم پروتون ها و نوترون ها را به عنوان ذرات بنیادی پایدار در نظر بگیریم.

فیزیکدانان ذرات بنیادی در راستای پاسخ گویی به چنین سوالاتی پیشرفت های زیادی کرده اند،هر چند برخی از نکات اساسی هنوز هم در پرده ی ابهام قرار دارد. شواهد قابل ملاحظه ایی وجود دارد مبنی بر اینکه همه ی مواد از دو ذره ی بنیادی موسوم یه «کوارک» و «لپتون» ساخته شده اند و هیچ مدرکی وجود ندارد که نشان دهد هر یک از این دو ذره دارای زیر ساختار باشند. نیروهایی که این ذرات به یکدیگر وارد می کنند از طریق مجموعه ایی دیگر از ذرات است موسوم به« بوزون های حامل».

ساده ترین این سه دسته ذرات لپتون ها هستند. در طبیعت شش نوع مختلف لپتون وجود دارد که الکترون مشهورترین آنهاست. دو ذره ی دیگر نیز وجود دارد موسوم به «میون» و« تاو» که مشابه الکترون هستند و فقط جرمشان فرق دارد. میون و تاو به ترتیب ۲۰۰ و ۳۰۰۰ برابر سنگین تر از الکترون هستند. می توان به هریک از این سه لپتون(الکترون، میون، تاو) ذره ایی به نام «نوترینو» نسبت داد. بنابراین سه نوع مختلف نوترینو داریم: نوترینوی الکترون، نوترینوی میون و نوترینوی تاو. این سه نوع نوترینو به همراه الکترون، میون و تاو شش عضو خانواده ی لپتون ها را تشکیل می دهند.

همۀ این شش ذره در طبیعت وجود دارند و در شتاب دهنده های انرژی بالا تولید شده اند. البته در شرایط عادی فقط یکی از این شش ذره یعنی الکترون در اتم حضور دارد. این به معنی آن نیست که سایر ذرات غیرواقعی اند.همه ی آن ها اعضای خانواده ی لپتون ها هستند و در فیزیک ذرات در جایگاه یکسانی قرار دارند. همچنین ماده از شش نوع مختلف دیگر ذره موسوم به کوارک ساخته شده است. آنها را با نماد های “u”,”d”,”c”,”s”,”t”,”b” مشخص می کنند.

یک تفاوت بنیادی بین لپتون ها و کوارک ها وجود دارد: برخلاف لپتون ها هیچ وقت در تجربیات آزمایشگاهی کوارک ها به صورت ذرات آزاد مشاهده نشده اند.این واقعیت که کوارک ها داخل پروتون ها وجود دارند فقط بر اساس برخورد میان پروتون ها و سایر ذرات پرانرژی که بتوانند به داخل آن نفوذ کنند قابل بررسی است. در چنین آزمایش هایی که اعماق پروتون را می کاوند می توان دید که کوارک ها به عنوان زیرساختار پروتون وجود دارند. سومین دسته ی ذرات «بوزون های حامل» نام دارند.

این ذرات نقشی اساسی در مبادلۀ برهم کنش های بین سایر ذرات ایفا می کنند. بر طبق نظریه ی کوانتوم همه ی نیروها به دنبال مبادلۀ برخی ذرات بنیادی ظاهر می شوند. به عنوان مثال دافعه ی الکتریکی بین بین دو الکترون را در نظر بگیرید: فرض می کنیم یک الکترون، ذره ایی را (در این حالت فوتون نام دارد) گسیل می کند و الکترون دیگر آن را جذب می کند. در واقع همین انتقال فوتون است که دافعۀ الکتریکی بین این دو الکترون را ایجاد می کند.

ساده ترین بوزون حامل فوتون است که کوانتای تابش الکترومغناطیس محسوب می شود. می توان تصور کرد که همۀ برهم کنش های الکترومغناطیسی بین ذرات باردار ناشی از همین مبادله ی فوتون هاست. برای سایر برهم کنش ها بوزون های حامل دیگری وجود دارند: نیروهای هسته ایی ضعیف بین کوارک ها یا لپتون ها نتیجۀ مبادله ی ذراتی است موسوم به بوزون های “w” و “Z”.

همچنین برهم کنش هسته ایی قوی بین کوارک ها از طریق هشت ذره موسوم به «گلئون» صورت می پذیرد. اعتقاد بر این است که برهم کنش گرانشی هم از طریق مبادلۀ ذراتی انجام می شود به نام «گراویتون». از بین همۀ این ذرات فوتون ها آشناترند. در حالی که بوزون ها ی W و Z واقعا در شتاب دهنده ها تولید شده اند، گلئون ها در برخی از برهم کنش های ذرات به طور غیر مستقیم مشاهده شده اند. بنابراین وجود این ذرات به خوبی تایید شده است.

در حال حاضر فقط گراویتون است که به طور مستقیم مشاهده نشده و باید به آن فقط در حد یک ذره ی نظری نگریست. بنابراین براساس شناخت فعلی می توانیم همۀ نیروهای طبیعت را بر اساس کوارک ها، لپتون ها و بوزون های حامل تعبیر و تفسیر کنیم. کوارک ها و لپتون ها به عنوان اجزای سازندۀ ماده عمل می کنند در حالی که بوزون های حامل برهم کنش های بین ذرات را باعث می شوند. بوزون هیگز نیز یک ذره بنیادی دارای جرم است که وجود آن توسط مدل استاندارد فیزیک ذرات اثبات شده‌ است. مشاهده تجربی این ذره باعث شد دانشمندان بتوانند درباره چگونگی جرم‌دار شدن ماده توسط ذرات بنیادی بدون جرم دیگر، توضیح دهند. به طور خاص، بوزون هیگز، می‌تواند دلایلی برای تفاوت‌های بین فوتون که بدون جرم است و بوزون‌های W و Z که نسبتاً پرجرم هستند، ارائه کند. جرم ذرات بنیادی، تفاوت‌های بین الکترومغناطیس (که توسط فوتون‌ها ایجاد می‌شود) و نیروی هسته‌ای ضعیف (که توسط بوزون‌های W و Z ایجاد می‌شود) در ساختار میکروسکوپیک (و به‌ طبع ماکروسکوپیک) ماده مؤثر هستند؛ بنابراین، بوزون هیگز یک مؤلفه بسیار مهم در دنیای ماده‌ است(سایت بیگ بنگ، مقاله ذرات بنیادی جهان هستی)




مدل استاندارد فیزیک ذرات بنیادی، نام نظریه‌ای مربوط به نیروهای الکترومغناطیس، هسته‌ای قوی، هسته‌ای ضعیف و همچنین طبقه‌بندی ذرات زیراتمی شناخته‌شده‌است. این مدل در نیمه دوم قرن بیستم در نتیجه تلاش‌های مشارکت‌آمیز دانشمندان در عرصه جهانی شکل گرفت... مدل استاندارد اعضای از دسته‌های مختلف ذرات بنیادی (فرمیونها، بوزون‌های پیمانه‌ای و بوزون هیگز) را شامل می‌شود که به نوبه خود توسط ویژگیهای دیگری مانند بار رنگ از هم تمایز پیدا می‌کنند. با متمایز شمردن ذرات از پادذرات متناظرشان و همچنین حالت‌های رنگی مختلف کوارک‌ها و گلوئون‌ها، در مجموع ۶۱ ذره بنیادی در مدل استاندارد وجود دارند

(سایت ویکی پدیا)

تصویر جدول استاندارد ذرات بنیادی





















فایل قبلی که این فایل در ارتباط با آن توسط حسن خ ایجاد شده است